自己強化型機械学習プロジェクト 10 選

自己強化型機械学習プロジェクト 10 選

機械学習プロジェクトは大きな発展の可能性を秘めています。最近、韓国の人気ドラマでもこの用語が使用され、非常にロマンチックな方法で説明されました。データサイエンスを学ぶことができるだけでなく、履歴書にポイントを追加することもできます。結局のところ、採用担当者は一般的に、あなたのスキルによってあなたの可能性を判断します。

すべてのプログラマーは、大規模なデータセットを含む大量のデータをインテリジェントに処理する方法を学ぶ必要があります。さらに、すべてのデータセットがオープンで自由にアクセス可能であることを確認します。

[[352134]]

1. アイリスデータセット

データ サイエンスの初心者であれば、これが最適な出発点となります。このデータには 150 行と 4 列しかなく、パターン認識の文献の中で最も一般的で、最もシンプルで、最もリソースが豊富なデータセットであるはずです。分類技術を学びたいですか? これで間違いはありません。

2. ローン予測データセット

これは、ローンが承認されるかどうかを予測するのに役立つ、かなりシンプルなデータ セットでもあります。保険は、分析とデータ サイエンスの手法が最も多く利用されている業界の 1 つです。このデータセットを使用すると、保険会社のデータセットから操作を実行できるため、どのような課題があるのか​​、どのような戦略が使用されているのか、影響を与える変数は何かなどを把握できます。

3. Bigmart 販売データセット

ビジネスプロセスを改善するために分析を広範に活用している他の業界としては、小売業などがあります。これは回帰問題です。このデータには販売店舗の取引記録が含まれています。店舗の売上を予測できます。機械学習を使用すると、商品のレイアウト、在庫管理、カスタマイズされた見積もりなどのタスクを巧みに管理できます。

4. ブラックフライデーデータセット

これは、さまざまなショッピング体験から得た日常的な理解だけでなく、特別なエンジニアリング スキルを探求して拡張するための標準的なデータセットです。このデータセットには小売店で収集された販売取引が含まれており、購入金額を予測できます。

5. 人間の行動認識データセット

多くの機械学習コースでは、このデータを教育目的で使用しています。このデータにより、多重分類問題である人間の活動のカテゴリを予測できます。これは、内蔵のスマート慣性センサーを搭載したスマートフォンで撮影された 30 人の録画から収集されたものです。

6. 旅行履歴データセット

ユーザー カテゴリを予測したいですか? このデータセットは 2010 年から四半期ごとに利用可能で、米国の自転車シェアリング サービスから提供されています。このデータセットでは、専門的なデータ処理スキルを発揮する必要があります。

7. 映画映像データセット

多くのページは、ユーザーが変わるとコンテンツも変わります。推奨システムを構築しましたか? ユーザーに新しい映画を推奨できます。このデータセットは、データ サイエンス業界で人気のあるデータセットです。 4,000 本の映画に対して 6,000 人のユーザーから 100 万件の評価があり、さまざまなサイズも用意されています。

8.データセットを決定する

画像内の要素を分析して識別することができます。カメラが画像認識を使用して顔を検出するのと同じです。また、28 x 28 のサイズの画像 7,000 枚を使用して、画像内の数字を認識できるテクノロジを構築してテストすることもできます。

9. 都市の音の分類

あなたは音が好きな人ですか? 周囲のさまざまな音に注意深く耳を傾けていますか? この演習では、主に一般的な分類状況でのオーディオ処理を紹介し、オーディオから音の種類を分類するのに役立ちます。 10 のカテゴリーに分類された都市の音の抜粋 8,732 個が収録されています。

10. シカゴ犯罪データセット

600万件の観測データがあり、犯罪の種類を予測することができます。企業がデータセット全体を処理できる計算能力を持っている場合、サンプルを使用することは好まれません。このデータセットは、ローカル マシン上で大規模なデータセットを処理する実践的な経験を提供します。質問は簡単ですが、鍵となるのはデータ管理です。

要約する

上記の 10 個のデータセットの中から、まず自分のスキルセットに一致するものを見つけることができます。初心者の場合は、大きなステップを踏まず、簡単なことから始めて、一歩ずつ進歩することに集中してください。

<<:  知識が求められるポストディープラーニング時代に、知識グラフをいかに効率的かつ自動的に構築するか

>>:  ドローンのアフターサービス市場の改善が必要

ブログ    
ブログ    

推薦する

データセット検索アーティファクト! 100 個の大規模な機械学習データセットがここに収集されています

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

...

2021年、人工知能は知的ではない

ガートナー曲線について聞いたことがあるかもしれません。新しい技術が初めて導入されたとき、誰も興味を示...

自然言語処理シーケンスモデル——HMM隠れマルコフモデル

前回の記事では、主にテキストコーパスの抽出と前処理のプロセスについて説明しました。次のステップは、コ...

[トイレに座ってアルゴリズムを読む] アルゴリズム 8: 賢い隣接リスト (配列の実装)

前回は、空間と時間の複雑さがともにN 2であるグラフの隣接行列保存方法を紹介しました。今回は、グラフ...

チップレベルのエッジAIが次世代のIoTを推進

エッジ コンピューティングは、IT アーキテクトや組み込み開発者にさまざまな選択肢を提示する難しい問...

初心者からプロまでが使用する機械学習ソフトウェア トップ 10

この記事では、機械学習に最適なソフトウェアについて説明します。これらのソフトウェアは、ML コードを...

...

...

...

PyTorch ライブラリの 95% がこのバグの影響を受けます。テスラのAIディレクターも例外ではなかった

[[393110]]この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI...

Google の 15 のオープンソース無料人工知能プロジェクト!開発者: 了解しました

開発者は人工知能に関するオープンソース プロジェクトを数多く目にしてきたと思いますし、Github ...

調査によると、人工知能ソフトウェア市場は2025年までに370億ドルに達すると予想されている。

Forrester は、2025 年までの市場規模をより現実的に把握するために、AI ソフトウェア...

2020年に人工知能を始める正しい方法、トップ10のテクノロジートレンド予測が発表されました

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

なぜ人間は自分たちよりも賢い人工知能を作り出すのでしょうか?舞台裏では複雑なネットワークサポートが行われている

人間が自分よりも賢いものを創造できる理由について考えたことがありますか?あなたは、人工知能というこの...