LinkedIn が Dagli をオープンソース化し、Java 機械学習ライブラリをリリース

LinkedIn が Dagli をオープンソース化し、Java 機械学習ライブラリをリリース

近年では、大規模データ向けのTensorFlow、PyTorch、Caffee、CNTK、Spark、Kubeflow、さまざまな汎用モデル向けのscikit-learn、ML.NET、最近のTripoなど、優れた機械学習ツールが次々と登場しています。

Algorithmia による 2019 年の調査によると、機械学習アルゴリズムを使用する企業の成熟度は全体的に高まっているものの、ほとんどの企業 (50% 以上) では単一の機械学習モデルを展開するのに依然として 8 ~ 90 日かかっています (90 日以上かかる企業は 18% に上ります)。

ほとんどの人は、モデルの規模とそれを複製することの難しさ、経営陣の同意の欠如、利用可能なツールの不足を非難しました。

Dagli の場合、モデル パイプラインは、トレーニングと推論の両方において、有向非巡回グラフ、つまり頂点と辺で構成されるグラフとして定義され、各辺は 1 つの頂点から別の頂点へと方向付けられます。

Dagli の環境は、パイプライン定義、静的型付け、ほぼ普遍的な不変性、およびその他の機能を提供して、ほとんどの潜在的なロジック エラーを防ぎます。

「モデルは統合パイプラインの一部であることが多く、これらのパイプラインの構築、トレーニング、および本番環境への展開は依然として面倒です」と、LinkedIn の自然言語処理研究科学者 Jeff Pasternak 氏はブログ投稿で述べています。トレーニングと推論に対応するために重複した作業や無関係な作業が必要になることが多く、その結果、モデルの将来の進化とメンテナンスを複雑にする脆弱な「接着剤」コードが生成されます。

Dagli は、サーバー、Hadoop、コマンドライン インターフェイス、IDE、その他の一般的な JVM で動作します。ニューラル ネットワーク、ロジスティック回帰、GBDT、FastText、クロス検証、クロス トレーニング、機能選択、データ リーダー、評価、機能変換など、多くのパイプライン コンポーネントもすぐに使用できます。

LinkedIn は Dagli をリリースすることで、機械学習コミュニティに主に 3 つの貢献をしたいと考えています。

1. 使いやすく、バグに強い、JVMベースの機械学習フレームワーク

2. さまざまな統計モデルとトランスフォーマーを統合し、すぐに使用できるライブラリ

3. 従来の「ブラック ボックス」に匹敵する、各コンポーネントの実装を容易にしながら最適化をサポートする、有向非巡回グラフの新しい抽象化としてのシンプルでありながら強力な機械学習パイプライン。

Dagli は、経験豊富なデータ サイエンティスト向けに、既存の JVM テクノロジー スタックを活用して、保守性と拡張性に優れた高性能で本番環境対応の AI モデルへの道を提供します。

Dagli は、経験の浅いソフトウェア エンジニア向けに、一般的なロジック エラーを回避するように設計された JVM 言語とツールで使用できる API を提供します。

Pasternak 氏はまた、「Dagli によって、効率的ですぐに使用できるモデルの作成、変更、展開が容易になり、それらに伴う技術的な問題や長期的なメンテナンスの課題を回避できるようになることを期待しています」と述べています。

Dagli は、高度なマルチコア プロセッサと強力なグラフィック カードを最大限に活用して、単一のマシンで効率的にモデルをトレーニングします。

Dagli の仕組みを詳しく理解するために、まずは勾配ブースティング決定木モデル (XGBoost) のアクティブ リーフと高次元 N グラムのセットを LR モデル分類器の特徴として使用するテキスト分類器から始めましょう。

LinkedIn は Dagli を使用することで、効率的で本番環境対応のモデルの作成、変更、展開が容易になり、それに伴うことが多い技術的な課題や長期にわたるメンテナンスを回避できることを期待しています。

最後に、Dagli の GitHub アドレス リンクを以下に示します。

https://github.com/linkedin/dagli

<<:  2020 DIGIXグローバルキャンパスAIアルゴリズムエリートコンペティションが成功裏に終了し、キャンパスのイノベーションを刺激

>>:  AIの最高峰:自然言語処理

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

...

...

...

...

最大65万ドル! 2021年の米国大手企業のプログラマーの収入をみる

アメリカのテクノロジー大手は、この流行に対して全力で対応し、その力は衰えるどこ​​ろか増した。これら...

...

...

米国NHTSAの新規制:レベル2以上の自動運転に関わる事故は報告が必要

米国道路交通安全局(NHTSA)は、SAEレベル2の先進運転支援システム(ADAS)またはSAEレベ...

X-Dreamerは2Dと3D生成のギャップを埋め、高品質のテキストから3D生成を実現します。

近年、事前学習済みの拡散モデル[1, 2, 3]の開発により、テキストから3Dコンテンツへの自動作成...

...

中国航空工業集団の「ドラゴンネスト」の初飛行は、電力検査のインテリジェント時代の幕開けを告げる

最近、北京市南六環路の北京延尊物流園区付近の安坊線70号塔の下で、中飛Avi Dragon Nest...

AI分野 | ゲームのルールを変える画期的なアイデア10選

[[357174]] AI の旅が始まって以来、私は無限の可能性を秘め、輝かしい歴史に足跡を残してき...

AIoTは単なる発言ではない

みなさんこんにちは。今日はAIoTについてお話します。 AIoT、つまり AI + IoT は、人工...

初の科学ニュース執筆ロボット「小科」が発売

[[272541]] 8月1日、初の科学ニュース執筆ロボット「小科」が正式に就任し、その最初の一連の...