今朝早く、ネットユーザーが私に人気の AI プロジェクトを勧めてくれました。 世界中を旅して、アンジェラベイビーがもっとテレビシリーズを撮影できるようになると聞きました。 何が起こっているのか? ? よく見てみると、これは早朝から GitHub のホットリストに載っていた AI ビデオ切り抜きツールであることがわかりました。 公式紹介によると、この AI アーティファクトにより、ビデオ処理が非常にシンプルかつプロフェッショナルになり、「グリーン スクリーン」を必要とせずにリアルでシームレスな合成効果を実現できます。 やはり、労働者が「世界を旅する」ことを可能にするのはAIだけですね(涙)。 実は動画切り抜きAIは数多く存在していますが、これは本当にすごいです。まずはデモ版を見てみましょう。 道路背景と海背景の動画のうち、どちらがAIで合成されたものかわかりますか? 髪をアップにしても欠点は見当たりませんでした。 そして狂ったように踊っても合成効果には影響しません。 後ろの切り抜き部分も細かく見てみましょう。髪の毛が忠実に再現されているだけでなく、浮いている髪の毛まで再現されています… ダイナミックエフェクトでも同様で、頭を激しく振ることで詳細をリアルタイムでキャプチャできます。 この超強力な AI 切り抜きツールは、香港城市大学と SenseTime の共同研究チームによって開発されたもので、論文の第一著者は Zhang Hanke という博士課程の学生です。 次に、その背後にある技術的な原理を見てみましょう。 MODネット重要なのは、この AI が軽量のターゲット分解ネットワーク MODNet (Matting Objective Decomposition Network) を使用しており、背景が異なる単一の入力画像から動的なポートレートをスムーズに処理できることです。 簡単に言えば、ビデオからポートレートを切り取る機能です。 一部の映画やテレビ番組、特に時代劇では、登場人物の背景を後処理する必要があることはよく知られています。リアルな合成効果を実現するために、撮影時の背景には「グリーンスクリーン」が使用されるのが一般的です。グリーンスクリーンを使用すると、高品質のアルファマスクを作成して、画像やビデオから人物をリアルタイムで抽出できるためです。 さらに、グリーン スクリーンがない場合、事前定義されたトライマップが自然照明アルゴリズムへの入力として使用される場合でも、一般的に使用される技術的手段は照明処理です。このアプローチでは、決定された(不透明)前景、決定された(透明)背景、およびその間の不明な(不透明)領域からなる、ほぼ 3 次元のマップが生成されます。 3D マップに人間による注釈を使用するとコストがかかるだけでなく、深度カメラを使用すると精度が低下する可能性もあります。そこで、上記の欠点を解決するために、研究者はターゲット分解ネットワーク MODNet を提案しました。 図に示すように、MODNet は相互に依存する 3 つのブランチ (S、D、F) で構成されています。これらはそれぞれ、低解像度ブランチを通じて人間の意味 (SP) を予測し、高解像度ブランチを通じて垂直境界の詳細 (DP) に焦点を当て、最後に融合ブランチを通じてアルファマット (αp) を予測します。 詳細は以下の通りです。
さらに、本研究では、上記の基礎フレームワークに基づいて、自己監督戦略SOC(Sub-Objectives Consistency)とフレーム遅延処理方式OFD(One-Frame Delay)も提案しました。 その中で、SOC 戦略は、ラベルなしデータを処理する際に MODNet アーキテクチャの出力サブゴール間の一貫性を確保できます。OFD メソッドは、ポートレート マッティング ビデオ タスクを実行する際に、スムーズなビデオ シーケンス内のアルファ マスクを予測できます。以下のように表示されます。 実験的評価実験評価を行う前に、研究者らは写真ポートレートのベンチマーク データセット PPM-100 (写真ポートレートマッティング) を作成しました。 さまざまな背景の細かく注釈が付けられた肖像画画像 100 枚が含まれています。サンプルの多様性を確保するために、PPM-100 では、人体全体が含まれているかどうか、画像の背景がぼかされているかどうか、他のオブジェクトが含まれているかどうかなど、サンプルの種類のバランスをとるためのいくつかの分類ルールも定義されています。図に示すように: PPM-100 のサンプル画像には、豊かな背景とキャラクターのポーズが描かれています。したがって、より包括的なベンチマークと見なすことができます。 それでは実験結果を見てみましょう。 この図は、MODNet が MSE (平均二乗誤差) と MAD (平均) の両方で Trimap を使用しない他の方法よりも優れていることを示しています。そのパフォーマンスは Trimap を使用した DIM ほど良くはありませんが、MODNet を Trimap ベースの方法に変更すると、つまり Trimap を入力として受け取ると、Trimap ベースの DIM よりもパフォーマンスが向上し、MODNet の構造システムが優れていることが再び示されます。 さらに、研究者らは、モデルのサイズと実行効率の面での MODNet の利点をさらに実証しました。 このうち、モデルサイズはパラメータの総数で測定され、実行効率は NVIDIA GTX1080 Ti GPU 上の PPM-100 を超える平均参照時間で反映されます (入力画像は 512×512 にトリミングされます)。結果は以下のようになります。 上図は、MODNet の推論時間が 15.8ms (63fps) であり、FDMPA (31fps) の 2 倍であることを示しています。 MODNet は FDMPA よりもわずかに多くのパラメータを持っていますが、パフォーマンスは大幅に優れています。 モデルにはより大きな特徴マップや、注意メカニズムなどの時間のかかるメカニズムがある可能性があるため、パラメータが少ないことが推論速度の高速化を意味するわけではないことに注意することが重要です。 要約すると、MODNet は、シンプルで高速かつ効果的なリアルタイムのポートレート切り抜き処理方法を提案します。この方法は、RGB 画像のみを入力として受け取り、シーンの変化に応じてアルファ マスクの予測を実現します。さらに、提案された SOC と OFD により、MODNet は実際のアプリケーションにおけるドメイン シフト問題の影響を受けにくくなります。 残念ながら、この方法では、複雑な衣服やぼやけた動きのビデオなどのコンテンツがトレーニング データセットに含まれていないため、これらのビデオを処理できません。次の段階では、研究者は追加のサブ目標(オプティカルフロー推定など)を追加することで、モーションブラーによるビデオのカットアウトの問題を解決しようとします。 |
<<: 快手とインテルが提携し、KGNN プラットフォームでの大規模リアルタイム動的グラフトレーニングの効率を向上
19 世紀頃、イギリスの実証主義哲学者で社会学者の H. スペンサーは、「教育論」の中で、イギリスの...
最近、DeepMind は強化学習の分野で新しいことを行いました。簡単に言えば、DeepMind の...
この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...
2020 年、Stack Overflow によると、プロの開発者の 62% 以上がコンピューター...
人工知能がもたらす脅威について議論するとき、スカイネット、マトリックス、ロボットによる終末の世界とい...
Firefly のグラフィック デザイン ツールの新バージョンが Adobe Spring Fe...
近年、研究者らはトカマクの停止や損傷の原因となる核分裂反応を研究している。核分裂反応を予測・制御でき...
アマゾンは、同社が「未来を実現する」のに役立つと主張する一連の新しいドローンとロボットを発表した。し...
光学文字認識 (OCR) は、機械が画像やスキャンされた文書からテキストを認識して抽出できるようにす...
夏休みがやってきました。旅行が必要です。彼/彼女にサプライズをあげたいですか?通常、私たちの旅行は自...
デジタルヒューマンは、メタバースコンテンツ構築の礎として、持続的に実装および開発できる最も初期の成熟...
近年、人工知能(AI)はビジネスや業界でますます注目を集めています。企業が AI を使用する方法も、...