人工知能を学ぶには、このコア技術を知っておく必要があります!

人工知能を学ぶには、このコア技術を知っておく必要があります!

自然言語処理 (NLP) は、コンピューター サイエンスと人工知能の分野における重要な方向性です。自然言語を用いて人間とコンピュータ間の効果的なコミュニケーションを可能にするさまざまな理論と方法を研究します。主に機械翻訳、機械読解、質問応答システムなど、多くの分野が関係します。

音声認識からスマートホーム、人間と機械の戦いから自動運転車まで、人工知能の「進化」は私たちの社会生活の細部に何度も驚きをもたらしてきました。同時に、人工知能もさまざまなコア技術を習得します。

自然言語処理:コンピュータをツールとして利用し、文書や口頭の形式でさまざまな処理や加工を行う技術です。人と人、人とコンピュータ間のコミュニケーションにおける言語の問題を研究する学問であり、人工知能の主な内容です。

自然言語処理とは、言語能力や言語応用のモデルを研究し、そのような言語モデルを実装するためのコンピュータ(アルゴリズム)フレームワークを確立し、それを改善、評価し、最終的にはさまざまな実用的なシステムを設計するために使用することです。

[[359844]]
自然言語処理の応用

🔻
情報検索


情報検索は図書館資料の検索・取り出しから始まり、コンピュータ技術の導入により、単純なテキスト検索から画像、音声、動画などのマルチメディア情報検索へと拡大し、検索対象もデータベースからインターネットへと拡大しました。

一般的なモデル: ブールモデル、ベクトル空間モデル、確率モデル

よく使われる技術: 転置インデックス、潜在的意味解析 (LDA など)

機械翻訳

機械翻訳技術とは、コンピューター技術を使用してある自然言語を別の自然言語に翻訳するプロセスを指します。統計ベースの機械翻訳方式は、従来のルールベースや例文ベースの翻訳方式の限界を打ち破り、翻訳効率の大幅な向上を実現しました。

文書分類

文書分類: コンピュータ システムを使用して、特定の分類基準に従って大量の文書を自動的に分類することが目的です。

ドキュメント分類には、機械学習に基づく方法 (SVM、決定木など) とディープラーニングに基づく方法 (CNN、RNN など) の 2 つの方法があります。

プロセス: サンプル処理 - 特徴選択 - 分類。

アプリケーション: ライブラリ管理、コンテンツ管理、感情分析など。

質問応答システム


質問応答システムは、オープンドメイン対話システムとドメイン固有の質問応答システムに分けられます。質問応答システム技術とは、コンピューターが人間のように自然言語を使用して人とコミュニケーションできるようにする技術を指します。人々は自然言語で表現された質問を質問応答システムに送信することができ、システムは最も関連性の高い回答を返します。

音声認識

音声認識: コンピュータに入力された音声信号を書き言葉に変換します。

用途: テキスト入力、人間とコンピュータのコミュニケーション、音声翻訳など。

意味理解

意味理解技術とは、コンピューター技術を使用してテキスト文章を理解し、その文章に関連する質問に答えるプロセスを指します。意味理解は、コンテキストを理解し、回答の正確さを制御することに重点を置いています。セマンティック理解技術は現在、インテリジェントな顧客サービスや自動製品質問と回答などの関連分野で重要な役割を果たしています。

テキストマイニング

主にテキストのクラスタリング、分類、要約抽出、感情分析などが含まれます。同時に、マイニングされた情報と知識を視覚化して、インタラクティブな表現インターフェースを形成する必要があります。

情報抽出

情報抽出とは、自然言語テキストから特定のイベントや事実情報を抽出するプロセスであり、膨大な量のコンテンツを自動的に分類、抽出、再構築するのに役立ちます。

この情報には通常、エンティティ、イベント、および関係が含まれます。

例えば、ニュースから時間、場所、主要な数値を抽出したり、技術文書から製品名、開発期間、パフォーマンス指標などを抽出します。

自動要約と比較すると、情報抽出はより目的があり、見つかった情報を特定のフレームワークで提示できます。

情報抽出は、情報検索、質問応答システム、感情分析、テキストマイニングなどで広く使用されています。

ソーシャルメディア分析

Twitter や Facebook などのソーシャル メディア アプリケーションにはハッシュタグやトレンドがあり、自然言語処理を使用してこれらを追跡および監視し、世界中でどのようなトピックが話題になっているかを理解します。さらに、自然言語は、否定的、不快、不適切なコメントや投稿を除外することで、最適化プロセスに役立ちます。

感情分析

これは感情のための AI としても知られており、書かれた言葉や話された言葉から感情や情緒状態を識別、抽出、定量化するプロセスです。感情分析ツールは、顧客のレビューやソーシャル メディアの投稿などを処理し、新しいレストランの料理の品質など、特定の事柄に対する感情的な反応や意見を理解するために使用されます。

[[359845]]

実際、自然言語処理の範囲は上記の点に限定されません。自然言語処理の究極の目標は、自然言語を使用してコンピューターと通信することです。これにより、人々は、あまり自然で慣れていないさまざまなコンピューター言語を学習するために多くの時間と労力を費やすことなく、最も慣れている言語でコンピューターを使用できるようになります。自然言語処理って本当にすごいですね!

<<:  目に見えないAI技術は、知的な世界の秘密を理解するのに役立ちます

>>:  組織の AI 戦略が失敗する 7 つの理由

ブログ    
ブログ    

推薦する

WOT2019 検索推奨アルゴリズムフォーラム: さまざまな分野における AI ベースの検索推奨の実用化

6月21日、WOT2019グローバルテクノロジーサミットとグローバル人工知能テクノロジーサミットが北...

音声認識:市場の見通しは有望だが、コア技術にはまだブレークスルーが必要

人工知能製品が私たちの生活の中でますます普及するにつれて、テクノロジーの発展は社会の関心の焦点となっ...

...

MetaはQualcommチップの使用を拒否し、そのサポートソフトウェアの成熟度に疑問を呈している

クアルコムは、計算能力とエネルギー効率の点で優れたチップを備えた、世界最大のスマートフォンプロセッサ...

ライトスピードコンピューティングが画期的な進歩を達成、AIトレーニングコストの問題が解決される可能性

画像出典: Visual China 1956年、アメリカの経済学者によって「人工知能」の概念が提唱...

展望: 2023 年のディープラーニングとメタバースの未来

ディープラーニング (DL) は、再帰型ニューラル ネットワーク、長期短期記憶、畳み込みニューラル ...

...

ハードウェアクラッキングに耐えられるハッシュアルゴリズムにはどのようなものがありますか?

[[185577]] 1. はじめにブルートフォース クラッキング ツール hashcat を使用...

医療機器における人工知能:これらは新たな産業アプリケーションです

人工知能により、研究者や製造業者は生活の質を向上させることができます。 [[419960]]人工知能...

顧客体験を改善できませんか? AIを試してみませんか?

いつの時代も、顧客獲得競争は企業にとって永遠の課題です。AI技術がある程度発達した現在、多くの企業が...

ScalableMap: オンラインで長距離ベクトル化された高精度マップ構築のためのスケーラブルなマップ学習

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

...

...

ハードコア! CES 2021 アワード: 労働者は仮想人間、口紅は AI アルゴリズムを追加、ロボットは毛皮で覆われる

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...