人工知能の応用範囲は想像を超えています

人工知能の応用範囲は想像を超えています

こんにちは!皆さん、こんにちは。私は大学の科学研究者で、主に人工知能の分野で研究を行っています。今後も、第一に、人工知能に関する知識の紹介と普及、第二に、人工知能の事例分析、第三に、人工知能に関する最新の研究進捗報告というコンテンツをお届けしていきます。さて、まずは人工知能とは何か、そしてどこで活用できるのかをご紹介しましょう。

[[377726]]

人工知能

1. 人工知能とは何ですか?

まず、人工知能とは何かを理解する必要があります。人工知能や機械学習は、赤ちゃんが物事を学ぶ方法に似ています。赤ちゃんにリンゴとナシを与えて、ナシとは何か、リンゴとは何かを教えます (下の図を参照)。赤ちゃんは目でリンゴとナシの違いを見分けます。明らかに、この2つには色が大きく異なり、形も異なることがあります。そして、色や形は機械学習では特徴と呼ばれるものです。

[[377727]]

リンゴとナシの見分け方

人間は視覚的な特徴を使って物体を識別しますが、機械も同様です。違いは、人間は目を通して物体を認識するのに対し、機械はカメラで取得した画像を通じて特徴を分析して抽出することです。

視覚認識

2. 機能とは何ですか?

では、機能とは何でしょうか?例えば、下の図に示すように、特徴はピクセルであったり、ピクセルで構成されたオブジェクトのエッジ情報であったりします。これらは低レベルの特徴です。エッジ フィーチャは、人間の耳、鼻、目、口などの中間フィーチャを形成することもできます。さらに中間特徴を組み合わせることで、物体の表現モデルを得ることができます。例えば、人の頭は、耳、鼻、目、口などの中間構成要素特徴で構成されています。もちろん、特徴は人工的に設計することも可能であり、ディープラーニングが提案される前は特徴エンジニアリングと呼ばれていました。

特徴抽出

3. どうやって勉強するの?

機能が何であるかがわかったので、学習にそれをどのように使用すればよいでしょうか?ここでは、ディープラーニング畳み込みニューラルネットワークを例に、猫と犬の分類を目標として、機械学習アルゴリズムの動作プロセスを簡単に紹介します。機械学習は、猫と犬のサンプルを入力として受け取り、畳み込みニューラル ネットワークを通じて猫と犬のいくつかの特徴を抽出します。この特徴はアルゴリズムによって自動的に抽出されます。上の図のように、特徴もオブジェクトのピクセル、コンポーネント、モデルなどで構成されています。次に、ディープラーニング モデルは上記の特徴を組み合わせ、最終的に分類レイヤーを通じて画像を分類し、それが猫であるか犬であるかの確率を決定します。

畳み込みニューラルネットワーク

4. 人工知能はどこで活用できるのでしょうか?

最後に、おそらく誰もが気になるのは、人工知能や機械学習はどこで活用できるのか、ということでしょう。機械学習の実装は難しいという噂をよく耳にしたことがあるかもしれません。以下は機械学習のいくつかの応用シナリオです。

1. 自動運転。自動運転には、道路認識、道路標識認識、シーン理解、歩行者検知、車両認識、測位、ナビゲーションなど、多くの高度な技術が関わっており、これらはすべて機械学習技術と切り離せません。

道路セマンティックセグメンテーション

道路シーンの理解

2. ビデオ監視と検索。機械学習は監視の分野にも応用できます。たとえば、機械学習は人間の行動や属性特性を抽出し、周囲の環境に異常がないかどうかを監視できます。あるいは、警察は都市の監視システムを呼び出して、特定の特性を満たす人々を探すことができます。これは、監督機関による犯罪者の迅速なスクリーニング、調査、追跡に重要な役割を果たします。

歩行者の属性認識

3. 産業分野。産業分野では、例えば、3C 製品の印刷品質を識別し、製品のラベルが正しく印刷されているかどうかを判断できます。i3 コンピューターのラベルを i5 に貼り付けないでください。

ラベル文字認識

また、ボルトが締まっているか、製品に欠陥がないかを判断するなど、組み立てや製品の品質検査にも使われています。欠陥のある製品が市場に出回れば、顧客に悪い印象を与えてしまう可能性があります。新エネルギー電池など一部の分野でも、製品に欠陥があれば爆発などの危険を引き起こす可能性があります。

視覚的な欠陥検出

4. 音声認識と翻訳。携帯電話やコンピューターの音声アシスタントに話しかけると、ソフトウェアを開いたり、画像を検索したり、Web ページやその他のサービスを開いたりすることができます。もちろん、スマートスピーカー、スマート会話ロボット、Tmall Genieなど、成熟したアプリケーションもあります。音声認識は確かに私たちの生活に多くの利便性をもたらしました。

[[377732]]

音声認識アプリケーション

5. 検索エンジン。 Web ページにいくつかのキーワードを入力すると、Web ページがコンテンツの検索に役立ちます。さらに、Taobao、Douyin、Toutiao を使用したことがある人なら、機械学習技術を使用して、ソフトウェアが検索履歴に基づいてコンテンツを推奨することもできることを知っているはずです。

6. 株価予測。株式市場では、株価変動の履歴を一日中監視することが、近い将来、AI ソフトウェアに置き換えられるかもしれません。例えば、海外の関係機関は株価予測ソフトの研究を進めている。これはAIソフトを使って、現在の経済、軍事、国際関係など現在および過去の社会情報をインターネットで自動的に検索し、株価の上昇や下落を自動的に予測するものだ。これは、私たち人間が収集する情報よりも包括的かつ高速である可能性がある。

株価予測

7. その他上記のアプリケーションに加えて、機械学習には、映画の特殊効果制作、ゲーム開発、天気予報、医療診断、金融リスク評価など、他の多くのアプリケーションもあります。

[[377733]]

[[377734]]

CT診断

[[377735]]

天気予報

[[377736]]

リスク評価を入力する

<<:  スマートシティが公衆衛生危機の影響を緩和する方法

>>:  「AI as a Service」は、業界における人工知能の応用シナリオです。

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

TSMCは降伏を​​余儀なくされた!すべての機密データは11月8日までに提出されます

TSMCはついにアメリカの圧力に耐えられず降伏した。実際のところ、棒はまだ本当に下ろされておらず、数...

2大音声アシスタントであるAlexaとCortanaの融合の目的は何でしょうか?

[[201743]] BI中国語ウェブサイトが8月31日に報じた。水曜日、アマゾンとマイクロソフト...

機械が壁の建設を手伝うことがなぜそんなに難しいのでしょうか?これは人類の100年にわたる闘争の歴史である

[[418716]]建築の問題を研究すると、ほぼすべての「新しい」アイデアが、おそらく何十年も前に何...

iPhoneで初めての機械学習モデルを構築する方法

導入データサイエンティストとして、私は常に、トップテクノロジー企業が私と関係のある分野で新製品を発売...

...

自然言語処理の核心:シーケンス学習

人生におけるすべてのことは時間と関連しており、連続性を形成しています。シーケンシャルデータ(テキスト...

...

エンタープライズデータ開発のための大規模言語モデル: 概念、懸念事項、ホットトピック

翻訳者|朱 仙中レビュー | Chonglou導入GPT-4 は、韻を踏んだプロンプトを出しながら素...

フロントエンドでも機械学習を理解する必要があるパート2

[[376486]]前回の記事では機械学習の基礎知識について説明しました。この記事ではいくつかのア...

顔認識技術の推進は情報漏洩に悩まされている

2021年CCTV「3.15」ガラで、多くの店舗がカメラを使って顔情報を取得している事例が暴露され、...

再現可能なロボット合成のために化学者とロボットが理解できる汎用化学プログラミング言語

化学合成に関する文献の量は急速に増加していますが、新しいプロセスを研究室間で共有し評価するには長い時...

ガートナー:AIと自動化は次世代SASEの重要な機能となる

近年、セキュア アクセス サービス エッジ (SASE) テクノロジーは急速に発展し、産業界で広く使...

Google、金融機関の内部リスク警告の精度を2~4倍に高められるAIマネーロンダリング対策ツールをリリース

Googleは6月27日、生成AIを組み合わせてマネーロンダリング対策ツール「AML AI」をリリー...