IoTと機械学習がビジネスを加速させる5つの方法

IoTと機械学習がビジネスを加速させる5つの方法

モノのインターネットと機械学習は、今日のビジネスにおいて最も破壊的なテクノロジーの 2 つです。さらに、これら 2 つのイノベーションは、あらゆる企業に大きなメリットをもたらす可能性があります。これらを組み合わせることで、エンタープライズビジネスに革命を起こすことができます。

[[381706]]

IoT デバイスと機械学習の組み合わせは自然な流れです。機械学習が最適に機能するには大量の関連データが必要であり、IoT はそのデータを提供できます。これら 2 つのテクノロジの使用が急速に増加するにつれて、企業はこれらを併用し始める必要があります。

IoT と機械学習によってビジネス運営を改善できる 5 つの方法をご紹介します。

1. 非効率性に対処する

データによれば、現在約 25% の企業が IoT デバイスを使用しており、この数は今後も増加し続けると予想されています。こうしたセンサーを導入する企業が増えるにつれて、データを収集する場所も増えていきます。機械学習アルゴリズムはこのデータを分析して、職場の非効率性を特定できます。

機械学習プログラムは、さまざまな職場からのデータを調べることで、企業が異常に多くの時間を費やしている場所を見つけることができます。その後、従業員がその領域で費やす労力を削減するための新しいワークフローを提案できます。これは、ビジネスリーダーが機械学習なしでは実現不可能だと決して気付かない問題領域です。

機械学習プログラムは、人間が見逃す可能性のあるデータポイント間のつながりを作るのが得意です。また、従来のツールよりも 20 倍早く、より正確に予測を行うことができます。 IoT デバイスから供給されるデータが増えるにつれて、処理速度と精度は向上するばかりです。

2. ビジネスプロセスの自動化

機械学習と IoT により、日常的なタスクを自動化することもできます。ビジネス プロセスの自動化では、AI を使用してさまざまな管理タスクを処理するため、従業員が行う必要がありません。 IoT デバイスがこれらのプログラムに提供するデータが増えるにつれて、プログラムの効率も高まります。

時間の経過とともに、このようなテクノロジーにより、一部の業界では生産性が 40% 向上しました。スケジュール設定や記録保存などのタスクを自動化および合理化することで、従業員は他の付加価値の高い作業に集中できるようになります。

3. サプライチェーンの可視性

IoT 実装の最も有望な領域の 1 つはサプライ チェーンです。車両や輸送コンテナに搭載された IoT センサーは、リアルタイムの位置データや製品の品質など、重要な情報を企業に提供できます。このデータだけでもサプライチェーンの可視性を向上させることができますが、機械学習と組み合わせるとビジネスを変革できる可能性があります。

機械学習プログラムは、IoT センサーからリアルタイムのデータを取得して、それを実行することができます。起こりうる混乱を予測し、作業員がそれに応じて対応できるよう警告することができます。これらの予測分析により、企業はよくあるサプライチェーンの遅延を回避できるようになります。

4. リスク管理

企業が直面している脆弱性を理解していない場合、ビジネスリーダーは十分な情報に基づいた意思決定を行うことができません。 IoT デバイスは、企業がこれらのリスクをより深く理解するために必要なデータを提供できます。機械学習はさらに一歩進んで、人間が見逃す可能性のあるデータの興味深いポイントを発見することができます。

IoT デバイスは職場や顧客に関するデータを収集し、それを機械学習プログラムで処理することができます。

IoT と機械学習が予測できるリスクはビジネスリスクだけではありません。 IoT 空気質センサーは、従業員の健康を守るために HVAC フィルターを交換する時期を企業に通知できます。同様に、機械学習サイバーセキュリティ プログラムは、ハッカーが企業のネットワークに侵入しようとしていることを検出できます。

5. 廃棄物を減らす

IoT と機械学習がビジネスを変革するもう 1 つの方法は、無駄を排除することです。 IoT センサーからのデータにより、企業が必要以上にリソースを使用している可能性がある場所が明らかになります。機械学習アルゴリズムはこのデータを分析し、改善方法を提案することができます。

ビジネスにおける無駄の最も一般的な原因の 1 つはエネルギーです。さまざまな非効率性のためです。 IoT センサーは、廃棄物が発生している場所を測定し、機械学習を通じて、廃棄物を止めるための調整を行うことができます。

機械学習アルゴリズムと IoT デバイスを組み合わせることで、エネルギーの使用を制限し、プロセスで必要なものだけを使用するようにすることができます。これらの対策は小さいように思えるかもしれませんが、積み重なると大きな節約につながります。

IoT と機械学習がなければ、企業は潜在能力を最大限に発揮できません。それらの出現により、企業はコストを節約できるようになります。今日、モノのインターネットと機械学習はビジネスの世界を変えつつあり、これらのテクノロジーを採用しない企業はすぐに取り残される可能性があります。

<<:  RPAとAIの違いを理解する

>>:  RPA の収益は 2021 年に 18 億 9,000 万米ドルに達する見込みです。AI は RPA をどのように再定義するのでしょうか?

ブログ    
ブログ    
ブログ    
ブログ    
ブログ    

推薦する

人工知能は前例のないキャリア革命をもたらすだろう

最近、サンフランシスコでEatsaというアメリカンレストランが人気になっています! [[203610...

...

人工知能は進歩しすぎているのでしょうか?この記事を読めば、誰もが人工知能の歴史を理解できる

人工知能は常に人々に非常に高級感を与えます。人々に役立つものの意味と価値を理解する必要があります。 ...

高性能 LLM 推論フレームワークの設計と実装

1. 大規模言語モデル推論の概要従来の CNN モデル推論とは異なり、大規模言語モデルの推論は通常、...

...

...

新しいIT運用・保守管理にはインフラストラクチャとデータの両方が必要

AIビッグモデルの時代、データはIT担当者に「新たな使命」を与える今日、IT プロフェッショナルは企...

AI時代に向けてキャリアを再設計する時が来た

Pew Researchの分析によると、AI、特にAIGCの台頭は管理職や専門職に大きな影響を与える...

この「ペア」は悪くないですね! AIとのペアプログラミング

翻訳者 |陳俊レビュー | Chonglou 「ペアプログラミング」という概念を聞いたことがあります...

...

問題が VPN の問題であることを証明するにはどうすればよいですか?コンピュータ科学者は簡単な方法を発見した

P/NP 問題は、計算複雑性の分野における未解決の問題です。人々は、「すべての計算問題を妥当な時間内...

...

Baidu CTO 王海鋒氏のCNCC2019講演: ディープラーニングプラットフォームが産業インテリジェンスをサポート

10月17日から19日まで、2019年中国コンピュータカンファレンス(CNCC2019)が蘇州で開催...