2021 年の自然言語処理 (NLP) のトレンド トップ 10

2021 年の自然言語処理 (NLP) のトレンド トップ 10

2020 年は、ディープラーニングベースの自然言語処理 (NLP) 研究にとって忙しい年でした。最もノイズの多い英語は、これまでにリリースされた最大の自然言語処理 (NLP) トランスフォーマーである GPAT-3 によって生成されました。 OpenAI の GPAT-3 (1750 億のパラメータ) は、170 億のパラメータを持つ Microsoft Research の Turing-NLG の以前の記録を約 10 倍上回りました。

最近の NLP の発展では、これまでよりも少ないトレーニング データしか必要ありません。これらの他の事例は、より正確なテキスト分析、感情分析、会話型 AI、およびその他の多くのユースケースのために、従来のルールベースのアルゴリズムとともにこれらのディープラーニング モデルを展開することに加えて、このテクノロジの強力な利点を説明しています。

NLP の複雑さを簡素化するために、Analytics Insight は 2021 年の自然言語処理のトレンドのトップ 10 を紹介します。

[[382907]]

1. 教師あり学習と教師なし学習の連携

教師あり学習と教師なし学習の応用は、自然言語処理に大きなサポートを提供します。たとえば、テキスト分析では、教師なし学習と教師あり学習の両方を活用してドキュメント内の専門用語とその品詞を理解し、教師なし学習ではそれらの間の共生関係を判断できます。

2. 強化学習によるNLPモデルのトレーニング

強化学習は、サンプル効率、トレーニング時間、全体的なベストプラクティスの点で大きな進歩を遂げてきましたが、RL モデルをゼロからトレーニングするのは依然として比較的時間がかかり、順次的な作業です。したがって、データ サイエンティストは、モデルを最初からトレーニングするのではなく、最初に NLP ベースの教師ありモデルをトレーニングし、次に強化学習を使用して微調整することを望むでしょう。

3. 正確なディープラーニング分類

自然言語処理における深層回帰の応用は多岐にわたります。リカレント ニューラル ネットワーク (RNN) などの技術は、解析を使用してデータ サイエンティストに正確なテキスト分類を提供できます。したがって、RNN は、一部のテキスト分析プラットフォームにおけるドキュメント分類とエンティティ タグ付けの一般的なトレンドになるでしょう。

4. 市場情報監視

NLP は、追跡副詞節: 市場情報レポートの監視拡張機能で重要な情報を抽出し、企業が将来の戦略を策定するためのインテリジェントな情報を抽出するために使用されます。 2021 年以降、NLP はさまざまなビジネス分野で応用されるでしょう。現在、この技術は金融マーケティングで広く使用されています。市場心理、入札の遅延や終了に関する徹底した洞察を共有し、大規模なリポジトリから情報を引き出します。

5. モデルの微調整はシームレスに

転移学習により、事前トレーニング済みモデルを使用して感情分析、テキスト分類などのアプリケーションを作成できるようになります。医療分野では転移学習により患者満足度などを正確に測定できるようになります。これは、消費者が満足しているかどうかを表すスコアとして満足度が考えられるあらゆるサービス業界にも適用できます。

6. カスタマイズされた製品の推奨

電子小売業者は、NLP と機械学習テクノロジーを使用して、顧客エンゲージメントを向上させ、顧客の閲覧パターンとショッピングの傾向を分析します。その他のインテリジェンス分析には、購買行動、自動生成された製品説明などが含まれます。

7. インテリジェントなセマンティック検索

セマンティック検索の必要性は、2021 年に NLP に影響を与えると予想されるもう 1 つのトレンドです。この検索には自然言語処理と自然言語理解が含まれ、テキストに含まれる中心的なアイデアの詳細な理解が必要になります。

8. インテリジェント認知コミュニケーション

ディープラーニング、教師なしおよび教師あり機械学習にヒントを得た数多くの自然言語技術が、認知コンピューティングのコミュニケーション機能を形作り続けるでしょう。

9. チャットボットとバーチャルアシスタントの成長

自然言語処理 (NLP) の進歩により、チャットボットと仮想アシスタント市場は堅調に成長するでしょう。 2019年に26億ドルと評価されたチャットボット市場は、2024年までに94億ドルに達すると予想されています。

10. ソーシャルメディアにおける感情分析

自然言語処理は、ソーシャル メディア プラットフォームに投稿されたブランド コミュニケーションに対する視聴者の反応を理解し、分析するための優れたツールになります。オピニオンマイニングとも呼ばれ、ソーシャルメディアの投稿を通じて企業にコメントしたり、企業とやりとりしたりする消費者の態度や感情状態(幸せ、悲しみ、怒り、イライラなど)を分析するのに役立ちます。

NLP を実際に使用することで、大量の非構造化テキストや音声データを持つ組織はダーク データの問題を克服し、効果的に洞察を掘り出すことができます。しかし、NLP の本当の真実は、それが AI のさまざまな側面に関係していることであり、これは今後数年間にこのテクノロジーがもたらす全体的なダイナミックな影響を示唆しています。

<<:  機械学習モデルを評価する際にデータ漏洩を防ぐ方法

>>:  機械学習をよりスマートにする 5 つの成功事例

ブログ    

推薦する

業界観察:世界の人工知能開発はどのレベルに達しましたか?

[[334267]]今日の技術コミュニティにおける人工知能の開発レベルについては、学界、産業界、メ...

GPT-3.5 を選択すべきでしょうか、それとも Llama 2 などのオープンソース モデルを微調整すべきでしょうか?総合的に比較した結果、答えは

GPT-3.5 の微調整には非常にコストがかかることはよく知られています。この論文では、手動で微調整...

2024年のビッグデータの不完全な予測

人工知能の進歩は2024年まで大きな原動力となる可能性が高く、ビッグデータの課題、つまりそれをどのよ...

...

エッジコンピューティング時代の到来は AI にどのような影響を与えるのでしょうか?

[[270736]]近年、人工知能はテクノロジー界で注目されている分野です。中国では、Megvii...

...

今後のAIの5大発展トレンドとは?2024年は「意味のある人工知能時代」の到来を告げる

生成型人工知能の出現により、人間と人工知能の距離は徐々に縮まっています。これまで関連技術にあまり注意...

インテリジェント アシスタントが、設計から運用、保守まで、ソフトウェア開発プロセス全体を処理します。

設計、コーディングからテスト、導入、運用・保守まで、ソフトウェア開発の全プロセスをAIに任せることが...

分散キャッシュの実装: Java と MongoDB のキャッシュ一貫性戦略

インターネット アプリケーションの急速な発展に伴い、分散システムにおけるキャッシュが重要な役割を果た...

ジェネレーティブ AI がデジタル変革の優先事項に与える影響

2024 年に向けて、CIO は生成型 AI の可能性とリスクを考慮してデジタル アジェンダを再構築...

マグロのように尾の弾力性を動的に調整する「ロボットマグロ」がサイエンス誌に掲載

バージニア大学のダン・クイン教授と博士研究員のゾン・チアン氏は、生体力学、流体力学、ロボット工学を組...

合理性への回帰とアプリケーションとの統合 - AI時代のモバイル技術革新カンファレンス

人工知能の出現により、ますます多くの企業がそれを業務や生産に応用しています。新しいモバイル開発技術が...

...

AIチップ畳み込みニューラルネットワークの原理

[[319839]]畳み込みニューラル ネットワーク (CNN) は、人工ニューロンが特定のカバレッ...

1行のコードでデバッグと印刷を排除し、アルゴリズムの学習を支援

[[442725]]この記事はWeChatの公開アカウント「Python Technology」から...