2021 年の自然言語処理 (NLP) のトレンド トップ 10

2021 年の自然言語処理 (NLP) のトレンド トップ 10

2020 年は、ディープラーニングベースの自然言語処理 (NLP) 研究にとって忙しい年でした。最もノイズの多い英語は、これまでにリリースされた最大の自然言語処理 (NLP) トランスフォーマーである GPAT-3 によって生成されました。 OpenAI の GPAT-3 (1750 億のパラメータ) は、170 億のパラメータを持つ Microsoft Research の Turing-NLG の以前の記録を約 10 倍上回りました。

最近の NLP の発展では、これまでよりも少ないトレーニング データしか必要ありません。これらの他の事例は、より正確なテキスト分析、感情分析、会話型 AI、およびその他の多くのユースケースのために、従来のルールベースのアルゴリズムとともにこれらのディープラーニング モデルを展開することに加えて、このテクノロジの強力な利点を説明しています。

NLP の複雑さを簡素化するために、Analytics Insight は 2021 年の自然言語処理のトレンドのトップ 10 を紹介します。

[[382907]]

1. 教師あり学習と教師なし学習の連携

教師あり学習と教師なし学習の応用は、自然言語処理に大きなサポートを提供します。たとえば、テキスト分析では、教師なし学習と教師あり学習の両方を活用してドキュメント内の専門用語とその品詞を理解し、教師なし学習ではそれらの間の共生関係を判断できます。

2. 強化学習によるNLPモデルのトレーニング

強化学習は、サンプル効率、トレーニング時間、全体的なベストプラクティスの点で大きな進歩を遂げてきましたが、RL モデルをゼロからトレーニングするのは依然として比較的時間がかかり、順次的な作業です。したがって、データ サイエンティストは、モデルを最初からトレーニングするのではなく、最初に NLP ベースの教師ありモデルをトレーニングし、次に強化学習を使用して微調整することを望むでしょう。

3. 正確なディープラーニング分類

自然言語処理における深層回帰の応用は多岐にわたります。リカレント ニューラル ネットワーク (RNN) などの技術は、解析を使用してデータ サイエンティストに正確なテキスト分類を提供できます。したがって、RNN は、一部のテキスト分析プラットフォームにおけるドキュメント分類とエンティティ タグ付けの一般的なトレンドになるでしょう。

4. 市場情報監視

NLP は、追跡副詞節: 市場情報レポートの監視拡張機能で重要な情報を抽出し、企業が将来の戦略を策定するためのインテリジェントな情報を抽出するために使用されます。 2021 年以降、NLP はさまざまなビジネス分野で応用されるでしょう。現在、この技術は金融マーケティングで広く使用されています。市場心理、入札の遅延や終了に関する徹底した洞察を共有し、大規模なリポジトリから情報を引き出します。

5. モデルの微調整はシームレスに

転移学習により、事前トレーニング済みモデルを使用して感情分析、テキスト分類などのアプリケーションを作成できるようになります。医療分野では転移学習により患者満足度などを正確に測定できるようになります。これは、消費者が満足しているかどうかを表すスコアとして満足度が考えられるあらゆるサービス業界にも適用できます。

6. カスタマイズされた製品の推奨

電子小売業者は、NLP と機械学習テクノロジーを使用して、顧客エンゲージメントを向上させ、顧客の閲覧パターンとショッピングの傾向を分析します。その他のインテリジェンス分析には、購買行動、自動生成された製品説明などが含まれます。

7. インテリジェントなセマンティック検索

セマンティック検索の必要性は、2021 年に NLP に影響を与えると予想されるもう 1 つのトレンドです。この検索には自然言語処理と自然言語理解が含まれ、テキストに含まれる中心的なアイデアの詳細な理解が必要になります。

8. インテリジェント認知コミュニケーション

ディープラーニング、教師なしおよび教師あり機械学習にヒントを得た数多くの自然言語技術が、認知コンピューティングのコミュニケーション機能を形作り続けるでしょう。

9. チャットボットとバーチャルアシスタントの成長

自然言語処理 (NLP) の進歩により、チャットボットと仮想アシスタント市場は堅調に成長するでしょう。 2019年に26億ドルと評価されたチャットボット市場は、2024年までに94億ドルに達すると予想されています。

10. ソーシャルメディアにおける感情分析

自然言語処理は、ソーシャル メディア プラットフォームに投稿されたブランド コミュニケーションに対する視聴者の反応を理解し、分析するための優れたツールになります。オピニオンマイニングとも呼ばれ、ソーシャルメディアの投稿を通じて企業にコメントしたり、企業とやりとりしたりする消費者の態度や感情状態(幸せ、悲しみ、怒り、イライラなど)を分析するのに役立ちます。

NLP を実際に使用することで、大量の非構造化テキストや音声データを持つ組織はダーク データの問題を克服し、効果的に洞察を掘り出すことができます。しかし、NLP の本当の真実は、それが AI のさまざまな側面に関係していることであり、これは今後数年間にこのテクノロジーがもたらす全体的なダイナミックな影響を示唆しています。

<<:  機械学習モデルを評価する際にデータ漏洩を防ぐ方法

>>:  機械学習をよりスマートにする 5 つの成功事例

ブログ    
ブログ    
ブログ    

推薦する

チャットボットのテスト: フレームワーク、ツール、テクニックの詳細

[[425133]] [51CTO.com クイック翻訳]長年にわたり、ビジネス マーケティングの動...

米国政府が警告: ​​ChatGPT は重大なセキュリティリスクをもたらす

最近、米国連邦政府は、ユーザーはChatGPTのサイバーセキュリティリスク、特にフィッシングやマルウ...

TENSORFLOW を使用してリカレント ニューラル ネットワーク言語モデルをトレーニングする

[[201448]]私は、TensorFlow リカレント ニューラル ネットワークのチュートリアル...

アコーディオン: HBase メモリ圧縮アルゴリズム

最近では、HBase ベースの製品の読み取り速度と書き込み速度に対する要件がますます高まっています。...

ビッグモデルの時代、周志華教授の「ラーニングウェア」の考え方を分析:小さなモデルでも大きなことができる

ビッグモデルの時代に入りつつあることは間違いありません。オープンソースやクローズドソースのさまざまな...

...

Python で機械学習を簡単に

ナイーブ ベイズ分類器を使用して、現実世界の機械学習の問題を解決します。ナイーブベイズナイーブベイズ...

ResNetは3Dモデルにも使える。清華大学の「Jitu」チームが新たな研究を開始

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

ニューラルスタイル転送アルゴリズムで絵を描くことを学習する人間は、芸術分野で人工知能に負けるのでしょうか?

人工知能はますます多用途になり、すでに私たちの仕事のすべてを人工知能が引き継ぐことができるようです。...

...

YOLOより高速な180万画素超軽量物体検出モデルNanoDet

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

フェイスブック従業員の半数が10年以内にリモート勤務、転勤、給与削減へ、ザッカーバーグは二級都市、三級都市で大量採用

[[327238]] Twitter社が永久に在宅勤務を行うと発表した後、ザッカーバーグ氏は今後5年...

北京地下鉄は顔認識技術を使用して機密のセキュリティチェックを実施する予定

[[280913]] Jiwei.comニュース(文/Jimmy)によると、北京軌道交通指揮センター...