一般的な基本的なソートアルゴリズムを今回から理解しましょう

一般的な基本的なソートアルゴリズムを今回から理解しましょう

[[383742]]

この記事はWeChatの公開アカウント「Beta Learns JAVA」から転載したもので、著者はSilently9527です。この記事を転載する場合は、Beta Learning JAVA パブリック アカウントにお問い合わせください。

この記事は Github リポジトリ https://github.com/silently9527/JavaCore に含まれています。

プログラマーがよく使用する IDEA プラグイン: https://github.com/silently9527/ToolsetIdeaPlugin

完全にオープンソースの Taobao プロジェクト: https://github.com/silently9527/mall-coupons-server

序文

すべてのプログラマーが最初に接触するアルゴリズムはソート アルゴリズムであると私は信じています。ソートはデータ処理と計算において重要な役割を果たしており、ソート アルゴリズムは他のアルゴリズムの基礎となることが多いためです。この記事では、基本的なソート アルゴリズムからアルゴリズムの学習を始めます。

ソートアルゴリズムのテンプレート

始める前に、ソート アルゴリズムの共通テンプレートを定義しましょう。以降のすべてのソート アルゴリズムはこのテンプレートを実装します。

  1. パブリックインターフェースSortTemplate {
  2.  
  3. void sort(Comparable[] 配列);
  4.  
  5. デフォルトvoid print(Comparable[]配列) {
  6. for (比較可能な a : 配列) {
  7. システム.out.print (a + " " );
  8. }
  9. }
  10.  
  11. デフォルトのブール値 less(比較対象 a, 比較対象 b) {
  12. a.compareTo(b) < 0を返します
  13. }
  14.  
  15. デフォルトvoid exch(Comparable[] 配列、 int i、 int j) {
  16. 比較可能なtmp = array[i];
  17. 配列[i] = 配列[j];
  18. 配列[j] = tmp;
  19. }
  20.      
  21. }
  • Comparable: 実装するソート アルゴリズムをより汎用的にし、任意のオブジェクトをソートするために、ここでは Comparable 配列を使用します。
  • ソート: ソートアルゴリズムはそれぞれ異なる方法で実装されるため、サブクラスで独自に実装します。
  • less: a < b の場合に true を返すパブリックメソッドが定義されています
  • exch: 配列内の2つのオブジェクトを交換するために定義されたパブリックメソッド
  • print: データ内の各要素を印刷する

選択ソート

アルゴリズム実装のアイデア:

  • まず配列内の最小の要素を見つけます。
  • 実際には、配列の最初の要素と交換して、 1 つの要素が配置されるようにします。
  • 残りの要素の中から最小の要素を再度見つけ、それを配列の 2 番目の要素と交換し、すべての要素が整列するまでこのプロセスを繰り返します。

コード実装:

  1. パブリッククラスSelectionSortはSo​​rtTemplateを実装します。
  2.  
  3. @オーバーライド
  4. パブリックvoid ソート(比較可能な[] 配列) {
  5. int長さ = 配列.長さ;
  6. ( int i = 0; i < 長さ; i++) {
  7. 整数 最小値= i;
  8. ( int j = i + 1; j < 長さ; j++) {
  9. if (less(配列[j], 配列[ min ])) {
  10. 最小値= j;
  11. }
  12. }
  13. exch(配列、i、 min );
  14. }
  15. }
  16.  
  17. }

入力配列がソートされている場合、選択ソートの実行にはソートされていない場合と同じくらいの時間がかかることがわかります。

N要素の配列の場合、選択ソートを使用する際の時間計算量はO(n2)である。

選択ソートは、移動するデータが最も少ないソートです。スワップの数は、配列のサイズに比例します。N 要素の配列には、N 回のスワップが必要です。

バブルソート

アルゴリズム実装のアイデア:

隣接する 2 つの要素を比較します。最初の要素が 2 番目の要素よりも大きい場合は、2 つの要素の位置を入れ替えます。

最後の要素まで、隣接する要素の各グループに対して同じ操作を実行します。操作が完了したら、最大の要素をランク付けできます。

配列内のすべての要素が整うまでこのプロセスを繰り返します。

コード実装:

  1. パブリッククラスBubbleSortはSo​​rtTemplateを実装します。
  2.  
  3. @オーバーライド
  4. パブリックvoid ソート(比較可能な[] 配列) {
  5. int長さ = 配列の長さ - 1;
  6. ( int i = 0; i < 長さ; i++) {
  7. ( int j = 0; j < 長さ - i; j++) {
  8. if (less(配列[j + 1], 配列[j])) {
  9. exch(配列、j、j + 1);
  10. }
  11. }
  12. }
  13. }
  14.  
  15. }

N要素の配列の場合、バブルソートの時間計算量はO(n2)です。

挿入ソート

ポーカーをプレイしているとき、左側の分類されたカードの適切な位置に各カードを挿入してカードを並べることを想像してください。挿入ソートの考え方は似ている

アルゴリズム実装のアイデア:

  • 最初の要素はデフォルトで最初に順序付けられ、現在のインデックスは 0 から始まります。
  • 現在のインデックス位置を 1 つずつ移動します。現在のインデックス位置の左側の要素は順番になっています。コードを後ろから前に向かってスキャンし、現在のインデックス位置の要素と比較します。
  • 現在のインデックス位置の要素が左側の順序付けられた位置に収まることを確認した後、その位置に挿入します。
  • 現在のインデックス位置の要素がソートされた最後の要素より大きいと判断された場合、現在のインデックス位置は直接後方に移動します。
  • すべての要素が整うまでこのプロセスを繰り返します。

コード実装:

  1. パブリッククラスInsertionSortはSo​​rtTemplateを実装します。
  2.  
  3. @オーバーライド
  4. パブリックvoid ソート(比較可能な[] 配列) {
  5. int長さ = 配列.長さ;
  6. ( int i = 1; i < 長さ; i++) {
  7. for ( int j = i; j > 0 && less(array[j], array[j - 1]); j --) {  
  8. exch(配列、j、j - 1);
  9. }
  10. }
  11. }
  12.  
  13. }

コードの実装から、現在のインデックスの要素が左側の順序付き配列の最後の要素よりも大きい場合、内部ループが直接終了し、ソートする配列に部分的な順序があり、挿入ソート アルゴリズムが非常に高速になることがわかります。

最悪のケースを考えると、入力配列が反転されている場合、挿入ソートの効率は選択ソートと同じで、「時間計算量はO(n2)」です。

シェルソート

挿入ソートは、隣接する要素を交換するだけであり、要素は配列から正しい位置に少しずつしか移動できないため、大規模な順序不同の配列では遅くなります。挿入ソートは、部分的に順序付けられた配列をソートするのに非常に効率的です。

シェルソートは、これら 2 つの特性に基づいて挿入ソートを改良します。

アルゴリズム実装のアイデア

  • まず、サブ配列を分離するためのステップ サイズ h を設定します。
  • 挿入ソートを使用してhサブ配列を個別にソートする
  • hステップサイズを減らし、hステップサイズが1になるまでサブ配列のソートを続けます。
  • ステップサイズが 1 の場合、通常の挿入ソートになるため、配列は順序どおりに並んでいる必要があります。

シェル ソートが効率的な理由は、ソートの開始時に各サブ配列が非常に短く、ソート後にサブ配列が部分的に順序付けられるためです。どちらの状況も挿入ソートに非常に適しています。

コード実装:

  1. パブリッククラス ShellSort は SortTemplate を実装します {
  2.  
  3. @オーバーライド
  4. パブリックvoid ソート(比較可能な[] 配列) {
  5. ギャップ= 1;
  6. int長さ = 配列.長さ;
  7.  
  8. (ギャップ<長さ/3){
  9. ギャップ = 3 * ギャップ + 1;
  10. }
  11.  
  12. ギャップ >= 1 の場合
  13. ( int i = ギャップ; i < 長さ; i++) {
  14. for ( int j = i; j >= gap && less(array[j], array[j - gap]); j -= gap) {
  15. exch(配列、j、j - ギャップ);
  16. }
  17. }
  18. ギャップ = ギャップ / 3;
  19. }
  20. }
  21.  
  22. }

<<:  AI研究 | 陸宇:人工知能はオンライン教育を改善する大きな可能性を秘めている

>>:  自動化されたAIで予期せぬ収益機会を発見

ブログ    

推薦する

ウエストワールドがやってくる: ロボットは独自の言語を使ってコミュニケーションとコラボレーションを学ぶ

人工知能研究チームOpenAIが発表した最新の報告書は、ロボットが自ら作成した新しい言語を使って互い...

バイナリ検索ツリーの検証: インターネット上の古典的なアルゴリズム

[[427951]]この記事はWeChatの公開アカウント「Programmer Bear」から転載...

...

AI-WAN: AIOps と SD-WAN が出会うとき

[[320126]] [51CTO.com クイック翻訳]ソフトウェア定義広域ネットワーク (SD-...

ガートナー:テクノロジープロバイダーの33%が2年以内にAIに100万ドル以上を投資する

[[427302]]ガートナーの新しい調査によると、人工知能 (AI) 技術計画を持つテクノロジーお...

ファーウェイの石耀宏氏:成都にインテリジェントシティを構築し、スマートで美しい都市を創る

「巴斯」と呼ばれる快適さと「成都」と呼ばれるライフスタイルがあり、中国で最も幸せな都市として、成都は...

ChatGPTのiOS版はBing検索機能を統合しており、有料会員のみが利用可能

6月28日、OpenAIは今年5月にリリースしたChatGPTアプリのiOS版をリリースした。このア...

マトリックスシミュレーション! Transformer の大型モデルの 3D 視覚化。GPT-3 と Nano-GPT の各層がはっきりと見える

「マトリックスシミュレーション」の世界は本当に存在するかもしれない。人間のニューロンをシミュレートし...

Pythonアルゴリズム実践シリーズ: スタック

スタックは、特別な順序付けがされたテーブルです。挿入および削除操作はスタックの先頭で実行され、先入れ...

シャドーAIの潜在的な脅威に対処するための4つのヒント

AI ツールの導入はほとんどの組織がセキュリティを確保できるよりも速いペースで進んでいるため、シャド...

ディープラーニングは錬金術のようなものです。どんな迷信的な習慣がありますか?ユーザー: ランダムシード=42 は良い結果をもたらします

[[441423]]機械学習分野の研究者は皆、パラメータ調整という課題に直面していますが、言うほど簡...

数秒で AI を学ぶ - ディープラーニングの一般的な 4 つの活性化関数: シグモイド、Tanh、ReLU、Softmax

ディープラーニングにおける活性化関数は、ニューラル ネットワークの重要なコンポーネントです。活性化関...

人工知能が爆発的に進化しています。この「鉄の飯碗」を手に入れるための新しいガイドをぜひ保存してください!

近年の人工知能の発展スピードは驚異的で、あらゆる分野で専門的なAIが登場しています。上海では以前、無...

Go データ構造とアルゴリズムの基本クイックソート

[[411577]]この記事はWeChatの公開アカウント「Light City」から転載したもので...