この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。 Facebook は PyTorch 開発者会議で PyTorch 1.3 を正式にリリースし、Colab でも呼び出せる Google Cloud TPU の完全なサポートを発表しました。 機械学習開発者はこれまでも Colab で PyTorch を使用できましたが、クラウド TPU をサポートするのは今回が初めてです。これは、高価な GPU を購入する必要がなく、クラウドで独自のモデルをトレーニングできることも意味します。 Google Cloud Platform の新規ユーザーの場合は、300 ドル分の無料クレジットを獲得できます。 現在、PyTorch は Github でサンプル コードを公式に提供しており、Google Cloud TPU を使用してモデルを無料でトレーニングし、Colab で推論を実行する方法を説明しています。 ResNet-50のトレーニング PyTorch は、クラウド TPU デバイス上で ResNet-50 モデルをトレーニングするケースを初めて導入しました。 Cloud TPU を使用して他の画像分類モデルをトレーニングする場合も、操作は同様です。 トレーニングの前に、コンソールに移動して、VM の名前とリージョンを指定して新しい VM インスタンスを作成する必要があります。 実際のデータで Resnet50 をトレーニングする場合は、CPU の数が最も多いマシンタイプを選択する必要があります。最良の結果を得るには、 n1-highmem-96マシン タイプを選択してください。 次に、Debian GNU/Linux 9 Stretch + PyTorch/XLA ブート ディスクを選択します。実際の ImageNet データを使用してトレーニングする予定の場合は、少なくとも 300 GB のディスク容量が必要になります。トレーニングに偽のデータを使用する場合、デフォルトのディスク サイズは 20 GB のみです。 TPUの作成
fake_data は仮想マシンに自動的にインストールされ、必要な時間とリソースが少なくなるため、最初の実行時にはトレーニングに偽のデータを使用することをお勧めします。トレーニングには conda または Docker を使用できます。 fake_data でのテストに成功したら、ImageNet などの実際のデータでのトレーニングを開始できます。 conda を使用したトレーニング:
Docker を使用したトレーニング:
n1-highmem-96 VM で完全な v3-8 TPU を使用してトレーニングする場合、通常、最初のエポックでは約 20 分、後続のエポックでは約 11 分かかります。このモデルは、90 エポック後に約 76% のトップ 1 精度を達成します。 Google Cloud による後続の課金を回避するには、トレーニングが完了したら仮想マシンと TPU を削除することを忘れないでください。 パフォーマンスはGPUの4倍 トレーニングが完了したら、Colab にモデルをインポートできます。 ノートブック ファイルを開き、メニュー バーの[ランタイム] で[ランタイム タイプの変更]を選択し、ハードウェア アクセラレータのタイプを TPU に変更します。 まず次のコード セルを実行して、Colab 上の TPU にアクセスできることを確認します。
次に、互換性のある PyTorch/TPU コンポーネントを Colab にインストールします。
次に、トレーニングするモデルと推論する必要がある画像をインポートできます。 PyTorch で TPU を使用するとパフォーマンスはどの程度向上しますか?公式ではTPUの1/8にあたるv2-8のコアを選択。NVIDIA Tesla K80 GPU使用時と比較すると、実測では推論時間が大幅に短縮され、性能が約4倍向上したという。 GitHub アドレス: https://github.com/pytorch/xla/tree/master/contrib/colab |
>>: 2019 年の Web 開発のトレンド トップ 10
編集者 | ヤン・ジェン制作:51CTO テクノロジースタック(WeChat ID:blog) 「す...
導入2020 年はまだ始まったばかりですが、最新の研究論文ではグラフ機械学習 (GML) へのトレン...
機械で書かれたニュース記事、AI 主導のサイバーセキュリティ、感情検出における重要な進歩など、201...
[[344160]] AIの実装が加速する中、AIデータのラベリングは人工知能産業の実装における重要...
[[440456]]この記事はWeChatの公開アカウント「Zhibin's Python ...
元記事: データサイエンスと機械学習が米国で最も急速に成長している職業である理由[[223686]]...
今日、ほぼすべての AI 作業は機械学習の成功に基づいています。機械学習には分析を検討するための十分...
[[399107]]ウー・ウェイ UiPath Greater China 社長前回 UiPath...
これは、会社のアルゴリズム グループの同僚向けに作成された技術ロードマップです。主な目的は、技術ルー...
[[255298]] 「2014年に私は、30年前に設立されたKingsoft WPSは雷軍によって...
ML と GenAI の世界に深く入り込むにつれて、データ品質への重点が重要になります。 KMS T...
[[255839]] BI中国語ウェブサイトが1月18日に報じた。マイクロソフトのCEOサティア・ナ...