PyTorch はついに Google Cloud TPU を使用できるようになりました。これにより推論パフォーマンスが 4 倍向上します。これをどのように活用できるでしょうか?

PyTorch はついに Google Cloud TPU を使用できるようになりました。これにより推論パフォーマンスが 4 倍向上します。これをどのように活用できるでしょうか?

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

Facebook は PyTorch 開発者会議で PyTorch 1.3 を正式にリリースし、Colab でも呼び出せる Google Cloud TPU の完全なサポートを発表しました。

機械学習開発者はこれまでも Colab で PyTorch を使用できましたが、クラウド TPU をサポートするのは今回が初めてです。これは、高価な GPU を購入する必要がなく、クラウドで独自のモデルをトレーニングできることも意味します。

Google Cloud Platform の新規ユーザーの場合は、300 ドル分の無料クレジットを獲得できます。

現在、PyTorch は Github でサンプル コードを公式に提供しており、Google Cloud TPU を使用してモデルを無料でトレーニングし、Colab で推論を実行する方法を説明しています。

ResNet-50のトレーニング

PyTorch は、クラウド TPU デバイス上で ResNet-50 モデルをトレーニングするケースを初めて導入しました。 Cloud TPU を使用して他の画像分類モデルをトレーニングする場合も、操作は同様です。

トレーニングの前に、コンソールに移動して、VM の名前とリージョンを指定して新しい VM インスタンスを作成する必要があります。

実際のデータで Resnet50 をトレーニングする場合は、CPU の数が最も多いマシンタイプを選択する必要があります。最良の結果を得るには、 n1-highmem-96マシン タイプを選択してください。

次に、Debian GNU/Linux 9 Stretch + PyTorch/XLA ブート ディスクを選択します。実際の ImageNet データを使用してトレーニングする予定の場合は、少なくとも 300 GB のディスク容量が必要になります。トレーニングに偽のデータを使用する場合、デフォルトのディスク サイズは 20 GB のみです。

TPUの作成

  1. コンソールに移動して TPU を作成します。
  2. 「名前」に、TPU ポッドの名前を指定します。
  3. [ゾーン] で、Cloud TPU のゾーンを指定します。その際、前に作成した VM と同じゾーンであることを確認します。
  4. 「TPU タイプ」で TPU タイプを選択します。最良の結果を得るには、 v3-8 TPU (8 v3) を選択します。
  5. 「TPU ソフトウェア バージョン」で、最新の安定バージョンを選択します。
  6. デフォルトのネットワークを使用します。
  7. IP アドレスの範囲を設定します (例: 10.240.0.0)。

fake_data は仮想マシンに自動的にインストールされ、必要な時間とリソースが少なくなるため、最初の実行時にはトレーニングに偽のデータを使用することをお勧めします。トレーニングには conda または Docker を使用できます。

fake_data でのテストに成功したら、ImageNet などの実際のデータでのトレーニングを開始できます。

conda を使用したトレーニング:

  1. # VM の名前とゾーンを入力します。
  2. $ gcloud beta compute ssh "your-VM-name" --zone "your-zone"
  3. (vm)$ export TPU_IP_ADDRESS=IPアドレス
  4. (vm)$ エクスポート XRT_TPU_CONFIG= "tpu_worker;0;$TPU_IP_ADDRESS:8470"  
  5. (vm)$ ulimit -n 10240  
  6. (vm)$ conda をアクティブ化 torch-xla- 0.5  
  7. (torch-xla- 0.5 )$ python /usr/share/torch-xla- 0.5 /pytorch/xla/test/test_train_imagenet.py --datadir=~/imagenet --model=resnet50 --num_epochs= 90 --num_workers= 64 --batch_size= 128 --log_steps= 200  

Docker を使用したトレーニング:

  1. # VM の名前とゾーンを入力します。
  2. $ gcloud beta compute ssh "your-VM-name" --zone "your-zone"
  3. (vm)$ export TPU_IP_ADDRESS=IPアドレス
  4. (vm)$ docker run --shm-size 128G -v ~/imagenet:/tmp/imagenet -e XRT_TPU_CONFIG= "tpu_worker;0;$TPU_IP_ADDRESS:8470" gcr.io/tpu-pytorch/xla:r0. 5 python3 pytorch/xla/test/test_train_imagenet.py --model=resnet50 --num_epochs= 90 --num_workers= 64 --log_steps= 200 --datadir=/tmp/imagenet

n1-highmem-96 VM で完全な v3-8 TPU を使用してトレーニングする場合、通常、最初のエポックでは約 20 分、後続のエポックでは約 11 分かかります。このモデルは、90 エポック後に約 76% のトップ 1 精度を達成します。

Google Cloud による後続の課金を回避するには、トレーニングが完了したら仮想マシンと TPU を削除することを忘れないでください。

パフォーマンスはGPUの4倍

トレーニングが完了したら、Colab にモデルをインポートできます。

ノートブック ファイルを開き、メニュー バーの[ランタイム] で[ランタイム タイプの変更]を選択し、ハードウェア アクセラレータのタイプを TPU に変更します。

まず次のコード セルを実行して、Colab 上の TPU にアクセスできることを確認します。

  1. インポートOS
  2. assert os.environ['COLAB_TPU_ADDR'], '編集 > ノートブック設定 > ハードウェアアクセラレータから TPU を選択してください'

次に、互換性のある PyTorch/TPU コンポーネントを Colab にインストールします。

  1. DIST_BUCKET = "gs://tpu-pytorch/wheels"  
  2. TORCH_WHEEL = "torch-1.15-cp36-cp36m-linux_x86_64.whl"  
  3. TORCH_XLA_WHEEL = "torch_xla-1.15-cp36-cp36m-linux_x86_64.whl"  
  4. TORCHVISION_WHEEL = "torchvision-0.3.0-cp36-cp36m-linux_x86_64.whl"  
  5. # Colab TPU互換PyTorch/TPUホイールと依存関係をインストールする
  6. !pip アンインストール -y torch torchvision
  7. !gsutil cp "$DIST_BUCKET/$TORCH_WHEEL"
  8. !gsutil cp "$DIST_BUCKET/$TORCH_XLA_WHEEL"
  9. !gsutil cp "$DIST_BUCKET/$TORCHVISION_WHEEL"
  10. !pip で"$TORCH_WHEEL"をインストールします 
  11. !pip で"$TORCH_XLA_WHEEL"をインストールします 
  12. !pip で"$TORCHVISION_WHEEL"をインストールします 
  13. !sudo apt-get libomp5 をインストール

次に、トレーニングするモデルと推論する必要がある画像をインポートできます。

PyTorch で TPU を使用するとパフォーマンスはどの程度向上しますか?公式ではTPUの1/8にあたるv2-8のコアを選択。NVIDIA Tesla K80 GPU使用時と比較すると、実測では推論時間が大幅に短縮され、性能が約4倍向上したという。

GitHub アドレス:

https://github.com/pytorch/xla/tree/master/contrib/colab

<<:  教師なし学習のための最も強力な戦略

>>:  2019 年の Web 開発のトレンド トップ 10

ブログ    

推薦する

ロボットを活用する3つの革新的な方法

[[412609]]画像ソース: https://pixabay.com/images/id-648...

サッカーボールとハゲ頭の区別がつかないAIがプレミアリーグのファンにまたもや嫌われる

スポーツにおける AI はどの程度信頼できないのでしょうか?先月、スコットランドサッカー選手権の試合...

マイクロソフトは、兆パラメータのAIモデルのトレーニングに必要なGPUを4,000から800に削減しました。

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

...

...

AIによって書かれたコードは「手書きのコード」よりもはるかに安全性が低い

Github Copilot のような人工知能コードアシスタントは、開発者の開発効率と生産性を大幅に...

分類アルゴリズムの概要

[[154315]]決定木分類アルゴリズム決定木誘導は古典的な分類アルゴリズムです。これは、トップダ...

Chain World: シンプルで効果的な人間行動エージェントモデル強化学習フレームワーク

強化学習は、エージェントが環境と対話し、蓄積された報酬を最大化するために最適なアクションを選択する方...

予知保全: 畳み込みニューラル ネットワーク (CNN) を使用したセンサー障害の検出

[[266977]]機械学習では、予知保全のトピックが時間の経過とともにますます人気が高まっています...

OpenAIのアルトマン氏、Nvidiaへの依存を減らすため中東の投資家とチップ協力について協議

1月20日、フィナンシャル・タイムズによると、OpenAIのCEOサム・アルトマン氏は、TSMCを含...

オーストラリアの裁判所は、特許出願においてAIを発明者とみなすことができると判決を下した。

[[415316]]海外メディアの報道によると、オーストラリアの裁判所は、特許出願において人工知能...

2021年5月のAI資金調達活動の概要

科学技術の継続的な進歩により、インテリジェント製品は徐々に日常生活に統合され、人工知能は現代の発展の...

知っておくべき 8 つのニューラル ネットワーク アーキテクチャ

ニューラル ネットワークは機械学習におけるモデルの一種です。ニューラル ネットワークは、機械学習の分...

AIストレージプラットフォームが機械学習とデータ分析のニーズを満たす方法

機械学習と AI タスクの実行方法や環境内でのデータの収集方法に応じて、組織はどの AI ストレージ...

ガートナーの予測: データレイクの90%は役に立たなくなる

ガートナーは以前、2018 年までにデータ レイクの 90% が生データで満たされ、そのテクノロジを...