Facebookは色を表現するために通信する2つのニューラルネットワークを作成

Facebookは色を表現するために通信する2つのニューラルネットワークを作成

色をどのように表現するか考えたことはありますか?最新の研究によると、人間は個別の記号を使用して領域の色を記録し、色を洗練させる過程で他の情報を追加していることがわかりました。これには何か理由があるのでしょうか? Facebook は 2 つのニューラル ネットワークの実験的現象を使用して情報をお伝えします。

人間の世界には何千もの言語がありますが、さまざまな色を表すために言葉を使用する方法は非常に一貫しています。

たとえば、多くの言語には赤とオレンジを表す 2 つの異なる単語がありますが、オレンジのさまざまな色合い (色がオレンジとオレンジ色) を表す、明確に区別された共通の単語が多数ある言語はありません。

たとえば、多くの口紅の色合いのそれぞれに固有の色名が割り当てられていたら、それを覚えるのは困難でしょう。

[[390533]]

言語学者たちは数学的なツールを使って、色の名前にこのような一貫性があるのは、人間が正確にコミュニケーションする必要性と記憶を最小限に抑える必要性のバランスを取るために言語を最適化しているからだと示しました。

追加の色の言葉を使用すると複雑さが増しますが、人々のコミュニケーション能力が大幅に向上することはありません。

Facebookの最近のAI研究では、2つの人工ニューラルネットワークに、見た色について互いに通信する方法を作成するように依頼したところ、AIも人間と同じように複雑さと正確さのバランスをとったことが示されました。

さらに、Facebook の研究チームは、連続した色空間を正確に記述するには、離散的な「色言語」しか使用できないことも発見しました。

これにより、コミュニケーションがどのように機能するかについての興味深い推測が生まれます。動物の「連続的な」鳴き声よりも、「離散的な」象徴的な言語の方がコミュニケーションに適しているということでしょうか?

モデル実装プロセス

まず、話す側(話者)と聞く側(聞き手)の 2 つのニューラル ネットワークを構築し、「コミュニケーション ゲーム」を確立します。ゲームの各ラウンドで、話者は連続した色空間から色を見て、シンボル(「単語」と見なすことができます)を出力します。リスナーはノイズ入力と同じ色または異なる色を見る場合があります。

リスナーはスピーカーが出力した単語を受け取り、正しい色のフラグメントを出力しようとします。最初は、スピーカーはランダムに単語を生成し、トレーニングの終わりまでに、各単語は色空間の連続した部分を表します。

研究チームは、ターゲット色とノイズ色の類似性を変えることでタスクの難易度を変えながら、実験を数回繰り返した。これらのバリエーションにより、色を命名するためのさまざまな「語彙」が生まれました。

訓練の最後に研究者らは語彙を分析し、AIが生成した色を表す言葉が人間の言語と性質が似ていることを発見した。さらに、どちらのタイプの言語も、複雑さと精度の間の可能な限り最良のトレードオフのセットを正式に定義する境界に近いです (図の黒い線)。

研究者らはその後の実験で、ニューラルネットワークが離散的なシンボルではなく連続的なシンボルを使用して通信できるようにした場合、複雑さと精度の間の最適なバランスが存在しなくなることを発見した。

2 つのニューラル ネットワークは引き続き通信できますが、通信効率は非常に低くなります。

言語はおそらく人間の最もユニークな特徴であり、私たちはそれを理解することなく日常生活で絶えず使用しています。

Facebook の研究によると、高度な AI モデルは実用的なアプリケーションに役立つだけでなく、人間の言語 (および一般的な認知) に関する科学的な疑問に答えるための実験ツールとしても機能することが示されています。

<<:  10 分でチャットボットを作成するにはどうすればよいでしょうか?

>>:  バグがあります! PyTorch が AMD CPU 搭載のコンピューターでハングする

ブログ    

推薦する

AIがバリアフリー時代へ:手話認識・翻訳の応用が意味するものとは?

人々の印象では、AIは「多数派」に属する技術カテゴリーであると私は信じています。いわゆる多数とは、第...

インテリジェント時代の到来により、インテリジェントロボットが私たちの仕事と収入を奪ってしまうのでしょうか?

インテリジェント社会の到来とともに、インテリジェントロボットは私たちの生活や仕事にますます多く登場す...

...

AI医薬品製造の全体像を理解するための1つの記事:年間売上高300億元、明確な3つの階層

次々と資金調達を行っているAI医薬品製造は、どれほど人気が​​あるのでしょうか?海外からの最高受注額...

ビッグデータとAIの連携

人工知能と機械学習は、組織がビッグデータからより優れたビジネス洞察を得るのにどのように役立つのでしょ...

自動運転タクシーの分野では競争が激しく、中国では百度がリードしています。

タクシーサービスに代表される商業的探究の激化に伴い、自動運転タクシーの急速な導入は、自動運転が人々の...

GPT-4 の創造性は人間を完全に超えています!最新の創造性テストGPT4は上位1%にランクイン

最近、GPT-4に関連した創造的思考テストが人気になっています。モンタナ大学とUMウエスタン大学の研...

...

人工知能の5大セキュリティ問題への対策

Google、スタンフォード大学、カリフォルニア大学バークレー校、OpenAI の研究者が論文「AI...

面白いですね!プログラマーが AI を使って双子の息子を認識するんです! 「この Raspberry Pi の顔認識システムは私のものほど正確ではありません」

2021年までに、学習アルゴリズムと人工知能の研究を通じて、機械は多くの面で人間よりも優れていると...

データサイエンスの分野で働くにはどのようなスキルが必要ですか?

本記事では、海外KDnuggetsフォーラムにおけるSimplilearnの統計結果と、国内有名求人...

これがあれば、母は私が授業をさぼったり、空想にふけったり、携帯電話で遊んだりすることを心配する必要がなくなります...

最近、中国薬科大学は試験的に教室に顔認識システムを導入しました。学生の出席を自動的に識別するだけでな...

学者は大喜び!MetaがPDFと数式を変換できるOCRツールをリリース

私たちが通常、論文や科学文献を読むときに目にするファイル形式は、基本的に PDF (Portable...

インスピレーションプログラミング: 最大公約数アルゴリズムの分析

2 つの正の整数が与えられたら、その最大公約数を求めます。これは、コードを書く学生なら誰でも遭遇した...