5月26日、チューリング賞受賞者で米国工学アカデミー会員のジョン・ヘネシー氏が、2021年中国国際ビッグデータ産業博覧会でビデオリンクを通じて「デジタル時代の技術革新」と題する講演を行った。 ジョン・ヘネシー氏は、テクノロジーに対して謙虚であることを忘れず、テクノロジーの進歩が人類に驚くべき影響をもたらしたことを認識しなければならないと述べました。たとえば、人間の脳の消費エネルギーは20ワットから25ワット程度と比較的少ないですが、機械学習に使用される大規模なデータセンターは人間の脳の1,000倍ものエネルギーを消費します。人間の脳と比較すると、稼働時に消費するエネルギーは非常に驚くべきものです。 さらに、トレーニング時間の問題もあります。たとえば、AlphaGo にチェスをプレイするようにトレーニングする場合、わずか数日で学習できますが、人間のチェスの名人を育成するには数年と数千回のゲームが必要です。チェスを学習する人工ニューラル ネットワークは、24 時間で数十万回のチェスのゲームをプレイして名人になることができます。 したがって、ジョン・ヘネシー氏の見解では、真にインテリジェントなシステムの開発は長いプロセスとなるだろう。しかし、データと機械学習を通じて、人間の生活を向上させ、人間をより賢く、より強力にし、世界をより良い場所にすることができます。 |
<<: より安全な街路のためのリアルタイムのインテリジェントビデオ分析
>>: 少数ショット学習(1) — 機械学習におけるタスク最適化空間
2022年6月14日、エッジ人工知能コンピューティングプラットフォームの世界的リーダーであるHori...
RPA(ロボティック・プロセス・オートメーション)業界のリーダーであるオートメーション・エニウェアは...
人工知能(AI)は、新薬の発見から新しい数学の問題の解決まで、あらゆることを人間が行うのに役立ってお...
業界ではよく知られているデータサイエンスのウェブサイトである KDnuggests は昨日、4 月の...
人工知能は、消費者と組織にとって大きな革命的な進歩です。その結果、さらに重要かつ緊急性の高い発見がい...
この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...
近年、人口ボーナスの継続的な減少に伴い、無人作業の需要がますます顕著になり、ロボット産業は急速な発展...
軍事情報は戦争と同様、不確実性の多い霧です。予測不可能で、予測不可能です。現在の人工知能の発展傾向か...
写真ビデオセグメンテーションは多くのシナリオで広く使用されています。映画の視覚効果を高めたり、自動運...
Microsoft は最近、AI 駆動型コンテンツ モデレーション システムを監査し、AI モデルの...
ディープラーニングの研究者は、神経科学と認知科学からインスピレーションを得ています。隠れユニットや入...
2月24日、Metaは「Spring Festival Gala」で、チーフサイエンティストのYan...