AI時代には、ナレッジグラフとナレッジマネジメントの二重の価値を活用する必要がある

AI時代には、ナレッジグラフとナレッジマネジメントの二重の価値を活用する必要がある

[[402551]]

ナレッジマネジメントは企業と個人の両方にとって非常に重要です。

従来の知識管理は、体系的にまとめると、次の 4 つの段階に分けられます。

第一段階:情報技術段階。

これは主に、情報技術、特にインターネットの使用と、イントラネットが地理的に分散した組織間で情報を共有するための効果的なツールであるという認識によって推進されました。

ナレッジマネジメントの第一段階は、情報と知識をより効果的に活用するために、新しいテクノロジーをどのように導入するかということです。

第2段階:組織文化段階。

この段階では、単にテクノロジーを導入し、価値ある情報を提供するだけでは、情報と知識の共有を効果的に促進し、完了させるには不十分であることがわかります。

ナレッジマネジメントの実装には組織文化の変化が伴い、多くの場合、組織の管理構造、関連するリソースの割り当て、パフォーマンス評価基準などを含む、非常に大きな変化となる可能性があります。

第3段階:知識分類段階。

知識分類法、つまり知識組織化の段階。これは、知識内容の重要性、特に分類と検索機能の重要性、および知識内容の合理的な記述と構造化された表現の重要性の認識から生じています。

知識が使用されるときにそれが見つからない場合、知識管理は役に立たないという考え方です。

第 4 段階: ナレッジ グラフ段階。

ナレッジグラフは、2012年5月にGoogleによって初めて提案されました。2019年には世界のAI分野の重要課題の1つと呼ばれ、2020年には中核課題として君臨しました。

さらに、ナレッジマネジメントの分野では人工知能関連の技術への言及が増えており、統合の傾向が見られます。

ナレッジグラフは、客観的な世界における概念、エンティティ、およびそれらの間の豊富な関係を構造化された形式で記述し、インターネット上の情報を人間の認知世界に近い形式で表現し、インターネット上の膨大な量の情報をより適切に整理、管理、理解する方法を人間に提供します。

特に、このAIの波の下で、Google、Microsoft、Facebookなどの海外のインターネット大手であれ、Baidu、Alibaba、Tencentなどの国内のインターネット大手であれ、いずれもナレッジグラフの分野で綿密かつ継続的な研究を実施し、数多くの価値あるシナリオとアプリケーションを実現してきました。

「ナレッジグラフ」の最も価値ある機能は、大量のダーティデータから有用な情報を抽出し、散在する情報の断片を集約してグラフの形で整理し、相対的に参照可能な情報や洞察力のある知識に変換して意思決定を支援することです。

「国内外の知識管理の研究動向」によると、2009年から2018年までの国内知識管理システム研究における高頻度キーワードの共起マップは、知識管理とナレッジグラフの研究と実践が活況を呈していることを示しています。

知識をうまく管理し、知識の明示的価値と暗黙的価値を十分に探求したい場合は、AI とナレッジ グラフ テクノロジを使用して、知識インテリジェンス収集、知識インテリジェンス ストレージ、知識インテリジェンス ウェアハウス、知識インテリジェンス処理、知識インテリジェンス検索、知識インテリジェンス シナリオ、知識インテリジェンス ポータルの 7 つの側面から総合的な評価を行う必要があります。そうすることで初めて、企業が蓄積したデータと知識の本質を科学的かつ合理的に抽出し、最終的に真にインテリジェントなナレッジ ベースを形成できます。

具体的に説明すると:

1. インテリジェントな知識収集:インターネット知識と文献知識のコレクターを提供し、社内文書知識をインテリジェントにクロールします。

2. 知識インテリジェントストレージ:基本的な知識情報、属性、テキスト、ステージなどの情報の分散ストレージ、インデックスコンテンツの分散ストレージを実現します。

3. ナレッジ ウェアハウス:企業のすべてのナレッジを統合的に保存、管理、保守し、ナレッジのアップロード、整理、公開、使用、フィードバック、最適化のプロセス全体の管理をサポートします。

4. インテリジェントな知識処理: doc 形式のドキュメントは段落またはディレクトリによって構造化され、知識コンテンツは自動的に分類され、インテリジェントにタグ付けされ、知識属性は自動的に構造化されます。

5. インテリジェントな知識検索:社内外のリソースの統合検索と検索結果の包括的な提示を実現します。検索コンテンツのインテリジェントなタグ付け、検索結果のフィードバックの最適化、ユーザーの検索行動に基づいた共同推奨をサポートします。

6. 知識ベースのシナリオ:シナリオ知識マップ コンフィギュレーターと関連するシナリオ知識マップ テンプレート ライブラリを提供し、企業が新入社員ガイダンス マップ、職務学習マップ、ビジネス プロセス知識マップなどのさまざまな種類のシナリオ マップを便利かつ柔軟に構築できるようにします。

7. ナレッジ インテリジェンス ポータル:ナレッジ コンテンツの包括的なプレゼンテーション、およびユーザーの行動に基づいたナレッジの分類、ラベル付け、コンテンツの推奨。

AI時代において、プロセス主導型、データ主導型から知識主導型への移行を真に実現するには、ナレッジグラフ+ナレッジマネジメントの二重の価値を十分に発揮する必要があります。

<<:  機械学習は産業界においてどのように機能するのでしょうか?

>>:  中国人はアルゴリズムと戦い始めている:ログインなし、いいねなし、フォローなし、コメントなし

ブログ    
ブログ    
ブログ    

推薦する

5四半期連続で前年同期比で減少: AIはデルの危機を逆転できるか?

企業の時代はなく、時代の企業だけがある!新たなトレンドに直面しても、古い大手企業は反応が遅く、固定観...

AIoT: 次世代コンバージェンスの利点と用途を理解する

人工知能 (AI) とモノのインターネット (IoT) は、過去 10 年間を定義してきました。ビッ...

...

インテルがモービルアイを買収、自動運転市場は3社間の競争の幕開けか

[51CTO.comより引用] 先日、インテルは、自動運転プラットフォームプロバイダーのMobile...

...

効果はGen-2を超えます! Byte の最新ビデオ生成モデルは、一文でハルクに VR メガネをかけさせます

一言で言えば、ハルクに VR メガネをかけさせるのです。 4K品質。パンダのファンタジーの旅これは、...

顔認識技術の原理と応用展望の分析

顔認識技術は人間の顔の特徴に基づいています。まず、入力された顔画像またはビデオ ストリームに顔がある...

...

ディープラーニングの最適化手法の簡単な紹介: 勾配降下法

実際、ディープラーニングは多くの厄介な最適化問題を解決しています。ニューラル ネットワークは、問題に...

6つの権威あるリストを制覇したDAMOアカデミー独自の深層言語モデルシステムAliceMindはオープンソースです

[[406821]]自然言語処理 (NLP) は、AI の最高傑作として知られています。従来の NL...

...

このアルゴリズムは顔認識の「マスク」問題を解決し、2日間で1,000人のコミュニティで97%の精度を達成しました | AIが疫病と戦う

ますます成熟する人工知能は、新型コロナウイルス感染症対策の最前線で「逆転者」と呼ばれる特別な集団とな...