AutoAI: ModelOps と DevOps を同期してデジタル変革を推進

AutoAI: ModelOps と DevOps を同期してデジタル変革を推進

[[418497]]

より多くの組織が AI ベースのデジタル変革を進めるにつれて、AI 運用分野でいくつかの重要なトレンドが生まれています。成長リーダーは、出遅れた企業とはまったく対照的に、最新のアプリケーション開発に AI と機械学習 (ML) を活用しています。以下は 451 Research が提供した統計です。

  • リーダーはデジタル変革モデルに投資します。デジタル変革リーダーの半数以上が機械学習を使用していますが、後進企業では 25% 未満です。さらに、62%の企業が独自のモデルを開発しています。
  • DevOps の人気により自動化の必要性が高まっており、現在 94% の企業が DevOps を採用しています。モデルはエンタープライズ アプリケーション開発の不可欠な要素になりつつあり、必要な継続的、同期的、自動化された開発および展開ライフサイクルの実現に役立ちます。
  • データ サイエンス チームと DevOps/データ分析チームの連携が強化されています。調査対象企業の 33% が、データ サイエンス/データ分析チームが DevOps の重要な関係者であると回答しています。

データ サイエンスと人工知能に興味を持つアプリケーション開発者はますます増えており、その多くはすでにデータ サイエンスの基礎を理解しています。経営幹部は、自動化を通じて業務を最適化し、人的資本を増強して、従業員が少ない労力でより多くの成果を出せるようにするために、予測をビジネスに組み込むことに熱心です。しかし、モデルを運用システムに導入するのは非常に困難です。運用上の問題に対処するために、運用中のモデル (ModelOps) を運用中のアプリケーション (DevOps) と連携させることが重要な投資領域となります。

インテリジェントな自動化は、モデルとアプリケーションのオーケストレーションにおいて重要な役割を果たすことができます。 AutoAI は、データ サイエンスの初心者と専門家の両方にとってモデル開発を簡素化するのに役立つと確信しています。そこで、AutoAI がモデルとアプリケーションへの投資収益率をどのように向上させるか、また DevOps と ModelOps をどのように調整するかについて説明したいと思います。

AI ライフサイクルを自動化すると、モデルが効率的かつ繰り返し優れた結果を生成できるようになります。

AI 開発には、アイデアの創出から運用中のモデルの監視まで、完全なライフサイクルがあります。ライフサイクル フェーズには、データの探索と準備、モデルの開発と展開、フィードバック ループを使用した最適化と監視が含まれます。データ サイエンティスト、ビジネス アナリスト、データ エンジニア、および主題専門家はすべて、このライフサイクルの主要な役割を担います。 DevOps チームがますます重要な役割を果たすようになっているという、明らかな新しい傾向があります。特に成長リーダーは、AI 開発ライフサイクル中に作成されたモデルを DevOps に取り入れて、大規模に優れた成果を達成しています。

AutoAI は、データ サイエンスの単調さ、反復性、時間のかかる側面を減らし、自動化を強化して、データ サイエンティストが AI 開発ライフサイクルで最も革新的な貢献をすることに集中できるようにすることを目的としています。 AutoAI は、データ サイエンスの初心者がモデルを迅速かつ簡単に構築するのにも役立ちます。これらの初心者は、モデルの構築方法やパイプラインの生成方法を学ぶこともできます。全体として、企業は細かく調整された予測、最適化、自動化によってより良い成果を達成できます。

継続的に最適化されたモデルはDevOpsとの連携に適しています

アプリケーション ライフサイクルでは、アプリケーションの誕生はアイデアから始まります。開発チームと設計チームは関係者と協力して、エンドユーザーの日常生活に基づいて問題を解決し、より良い成果を達成できるように支援する方法を決定します。このビジョンが実現されると、開発チームはアプリケーションがどのように機能するかを検討し始め、分析、設計、プロトタイピングの段階に入ります。その後、コーディングとユニット テスト、ユーザー テストとシステム テストを経て、リリースと展開が行われます。さらに、ユーザーからのフィードバックによって生じたニーズや課題に対応するために、ビジネスの変化や機会に応じて定期的に更新・調整を行う必要があります。 AI および ML モデルは動的なインタラクションを組み込み、各ユーザーに合わせてターゲットを絞ったサービスをカスタマイズします。

自動化は、継続的インテグレーション、ローコードおよびノー​​コードのアプリケーション開発などを通じて、すでにアプリケーション ライフサイクルに影響を与えています。これにより、経験豊富なアプリケーション開発者は、面倒な手動コーディングやアプリケーションと運用の統合を行うことなく、革新的なソリューションの設計に集中できます。一方、初心者の開発者は、豊富なコーディング経験がなくても、迅速に設計およびプロトタイプを作成できます。中断することなく、これらの自動化された継続的インテグレーション フローに AI モデルを統合する方法を見つける必要があります。

ModelOpsとDevOpsを同期させることで新たな機会が生まれる

調整モデルとアプリケーションへの投資について、説得力のあるビジネスケースを作成できることは間違いありません。データ サイエンティストは ModelOps を使用します。開発者は DevOps を使用します。どのようにして両者は同期を保つのでしょうか?

ModelOps により、データ サイエンスと実稼働 IT が連携してビジネス価値を創出できるようになります。 ModelOps を確立すると、モデルをアプリケーションに統合するプロセスがより最適化され、繰り返し実行可能になり、成功しやすくなります。 モデルを展開する従来のアプローチは一度限りのものであり、データ サイエンティストやデータ エンジニアにはモデルを実行するスキルが不足していることがよくあります。アプリケーションの統合、モデルの監視と調整、ワークフローの自動化については、デプロイメントが完了した後にのみ検討する場合があります。つまり、モデルとアプリケーション開発をデータおよび AI プラットフォームに統合し、集合的な資産とインテリジェンスをプラットフォームを通じて活用できるようにするということです。

自動化は、データとモデル、アプリケーションを組み合わせ、データとアプリケーションの両方の機能を最大限に活用します。

AutoAI を搭載した IBM Cloud Pak for Data は、ModelOps と DevOps の実装と統合に最適です。ビジネス ニーズを満たすために継続的な統合とデプロイメントに合わせて、定期的なデプロイメントと更新サイクルでデータ サイエンス チームから DevOps チームにモデルをプッシュできます。 Cloud Pak for Data は、Watson Studio、Watson Machine Learning、Watson OpenScale によってサポートされています。オープンな設計コンセプトを採用し、クラウドネイティブ アプリケーションと統合することで、ユーザーは AI を構築および拡張し、説明可能な AI を実現できます。

AutoAI は、データ サイエンス チーム、DevOps、アプリケーション開発者間のコラボレーションを促進し、運用環境でのモデルの展開と最適化の複雑さを軽減します。 DevOps およびアプリケーション開発の実践者であれば、Watson Machine Learning から REST API エンドポイントを取得し、使用状況の統計、モデルのステータス、KPI をより詳細に把握しながらモデルをデプロイできます。開発者は API 接続を設定して、スコアリングと予測のためにアプリケーションに追加情報を送信できます。

AIについて学び、AutoAIを活用するためのさらなる方法

これは、企業がデータ サイエンスと人工知能の助けを借りて AutoAI を活用し、成長を加速している方法のほんの一例です。

こちらをご覧ください: https://www.ibm.com/cn-zh/cloud/watson-studio/autoai AI を実行するための ModelOps と、モデルを管理および監視するための Explainable AI について詳しく知ることができます。

オリジナルリンク: https://www.ibm.com/blogs/journey-to-ai/2021/03/autoai-synchronize-modelops-and-devops-to-drive-digital-transformation/

IBM の詳細については、 http://cloud..com/act/ibm2021q3/cloud#p3 をご覧ください。

<<:  私たちが作ったAIは私たちを裏切るでしょうか?

>>:  産業用ロボットとは何ですか?

ブログ    
ブログ    
ブログ    

推薦する

畳み込みニューラルネットワークの基礎を1つの記事で学びます。

今日は畳み込みニューラル ネットワークについてお話します。畳み込みニューラル ネットワークは、主に、...

AIが「エッジ」に必要である理由

インテリジェンスは急速に増加しており、今日では、新しい生成型人工知能 (gen-AI) と機械学習 ...

2月10日に職場復帰ラッシュが到来し、北京は「急速AI温度検出器」の配備を開始した。

新型コロナウイルスによる肺炎の流行は依然として続いており、中国のさまざまな省や市では2月10日に大規...

DL時代のコード補完ツールは言語モデルよりもはるかに効果的である

プログラマーからデータ エンジニアまで、プログラム コードを書くことは基本的なスキルですが、長いコー...

負荷分散スケジューリングアルゴリズムを見てみましょう

[[122758]]ロード ホストは、スケジューリング メソッドまたはアルゴリズムと呼ばれる多くの負...

2021 年に注目すべき 27 の新たな建築技術トレンド (パート 1)

テクノロジーは建設業界にかつてないほど大きな影響を与えています。クラウドベースのコラボレーションやデ...

開発から生産まで: 機械学習に関する 7 つの実践的な提案

この記事は公開アカウント「Reading Core Technique」(ID: AI_Discov...

SQL Server 2005 のデータ マイニング アルゴリズム拡張メソッド

SSAS は 9 つのデータ マイニング アルゴリズムを提供していますが、実際の問題に基づいて適切な...

AIはイベント業界の未来を形作ることができるでしょうか?

ライブイベントは優れたマーケティング形式であり、ビジネスと顧客との関係を強化する優れた方法です。調査...

百度、中国企業のインテリジェントアップグレードプロセスを加速させる新型PaddlePaddleスマートマシンを発売

クラウドとインテリジェンスの統合は、中国企業が AI アプリケーションの実装の「最後の 1 マイル」...

スマートドライビングに才能が注ぎ込む:合理性と狂気が共存

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

...

Slik-wrangler、機械学習と人工知能のデータ前処理とモデリングのためのツール

現在、人工知能(AI)と機械学習は私たちの日常生活に入り込み、徐々に私たちの生活を変えつつあります。...

小売業における人工知能

[[433164]] [51CTO.com クイック翻訳]周知のように、小売業界の競争は激しく、人工...

おそらく2030年までに、量子コンピューティングのChatGPTの瞬間が到来するだろう

2030 年までに RSA 暗号を解読できるマシンが登場するでしょうが、まずは量子センシングやその他...