AIが侵害後の疲労を防ぐ方法

AIが侵害後の疲労を防ぐ方法

データ侵害疲労は長年の課題です。最高情報セキュリティ責任者 (CISO) は、絶え間ない問​​題解決と侵害による影響への対処に圧倒され、セキュリティ チームは疲れ果てています。消費者もまた、データ侵害が多発していることや、サイバーセキュリティに対する全体的な理解が不足していることから、関心を失っている。

[[420517]]

データ侵害疲労を完全に解消する唯一の方法は、侵害を阻止することです。もちろん、これは不可能です。したがって、次のステップは、潜在的なインシデントが本格的な脅威になる前に対処することです。しかし、今日のサイバーセキュリティ環境は、過労や燃え尽き症候群につながっています。人々にさらに多くのことを処理するよう求めても、問題は解決しないことがよくあります。

人工知能(AI)と機械学習(ML)は潜在的な解決策となるかもしれない。「自社のセキュリティ態勢を自分で管理できる」と、ダセラのCEO、アニ・チャウドゥリ氏は電子メールのインタビューで語った。 「自動化ソリューションに投資してください。また、フェデレーション ソリューションにも投資してください。セキュリティ チームの帯域幅を拡大するために、他のチームのワークフローを改善するソリューションに投資してください。」

データ侵害が多すぎることの危険性

仕事のことで眠れなくなるような人はいないはずですが、Forrester の調査によると、サイバーセキュリティ専門家の 3 分の 1 がまさにそうしているそうです。そして、ほぼ全員が、組織内で違反が発生した場合、それは自分たちの責任だと感じています。この重い責任感のせいで、多くの貴重で熟練した従業員が業界から追い出されてしまっています。経験豊富なスタッフがいなければ、サイバーインシデントの脅威が増大し、サイクルが再び始まります。

消費者側でも、データ侵害に対して無関心になってきています。多くの人は、攻撃者が何度も個人情報を盗んで販売しているため、最も基本的なセキュリティ対策を実施する意味がないと考えています。カーネギーメロン大学の調査によると、侵害の警告を受けた後、パスワードを変更したのは消費者のわずか3分の1だった。ユーザーがこれを実行するには数か月かかる可能性があり、影響を受ける可能性があることをユーザーが認識している場合でも同様です。むしろ、彼らは警報を無視するでしょう。

人工知能とサイバーセキュリティ

まず第一に、AI は万能薬ではないということを明確にする必要があります。このテクノロジーは組織のあらゆる問題を解決できるわけではありませんが、CISO とそのチームに疲労のサイクルから抜け出すために必要な後押しを与えるはずです。

私たちは、最も日常的な(そして頭を悩ませる)タスクを AI に「教える」ことができます。そのタスクの中には、データ侵害が始まる前にそれを検出するタスクも含まれます。機械学習アルゴリズムを使用することで、AI はログをすばやく読み取り、ネットワーク内の異常を追跡できます。ログを確認することの重要性は軽視されがちですが、ログを確認することで、チームはシステム内で異常なアクティビティが発生していることを発見し、最初の攻撃ポイントの 1 つとなります。しかし、これには時間がかかり、熟練した人材を他の緊急作業から引き離す必要があります。多くの組織は、AI を、エントリーレベルの職種であってもスキルギャップを解消する手段と見なしています。 AI により誤検知の数が減り、時間が節約されます。

クレデンシャルスタッフィングは、脅威アクターのお気に入りのツールとなっています。内部者の認証情報を盗み、簡単に検出されることなくネットワーク全体への扉を開き、ここからデータ侵害が始まる可能性があります。セキュリティ チームが発見する前に、ネットワーク内の複数のクラスターが侵害されていた可能性があります。 AI は従業員の習慣を識別し、行動モデルを使用して、通常の 9 時から 5 時までの従業員が午前 3 時に突然機密データベースにアクセスしたり、遠隔地の従業員が突然ログインしたりするなど、異常な事態を検出できます。重要なのはパターン認識と、普通ではないものを嗅ぎ分ける能力です。

AIは完璧ではない

AI はセキュリティ チームの多くのタスクを引き受け、軽減および防御戦略に対してより的を絞ったアプローチを提供できますが、CISO が夜も眠れなくなるような欠点もあります。人工知能はサイバー犯罪者にとって新たな攻撃ベクトルを生み出します。攻撃者は AI を偽情報のツールとして使用し、データを武器化することができます。 AI の脆弱性を悪用した攻撃は、検出がより困難なデータ侵害につながる可能性があります。データ侵害疲労を軽減するはずのツールが、結局は状況を悪化させてしまう可能性があります。

AI セキュリティは、データ侵害との戦いにおいて CISO やセキュリティ チームに取って代わるものではありません。代わりに、最も早い段階で潜在的な脅威に対処する方法として人間と協力します。最良の場合、検出、保護、軽減が容易になり、ストレスが軽減されます。

<<:  猿人歩行からAIまで:三次元戦略で一人ひとりに寄り添う「真のセキュリティ」

>>:  人工知能の研究内容:自然言語処理と知的情報検索技術

ブログ    
ブログ    
ブログ    

推薦する

...

...

語尾予測に基づく英語-ロシア語翻訳品質の向上方法

[51CTO.com からのオリジナル記事] ニューラルネットワーク翻訳モデルは、使用できる語彙のサ...

Cerebras が 1 台のマシンで 200 億のパラメータ モデルをトレーニングするという新記録を樹立

今週、チップスタートアップのCerebrasは、100億を超えるパラメータを持つNLP(自然言語処理...

オッペンハイマーの「彼女は消えた」!物理学界のファーストレディ、呉健雄はマンハッタン計画の重要な問題を解決した

長い待ち時間を経て、ついに『オッペンハイマー』が国内で公開される。ノーラン監督は映画の細部と品質に細...

FacebookはCNN Transformerの利点を組み合わせ、誘導バイアスを柔軟に利用するConViTを提案している

[[411034]] AI 研究者は、新しい機械学習モデルを構築し、パラダイムをトレーニングする際に...

GPT-4 モデル アーキテクチャが漏洩: 1.8 兆個のパラメータを含み、混合エキスパート モデルを使用

7月13日、海外メディアSemianalysisは最近、今年3月にOpenAIが発表したGPT-4モ...

突如、Stable Diffusion 3がリリースされました!ソラと同じアーキテクチャですが、すべてがよりリアルです

1年以上の開発期間を経て、前世代に比べて3つの主要な機能に進化しました。さあ、効果を直接確かめてみま...

GPT-4 よりも優れており、クローズドソース モデルよりも優れています。コードラマの謎のバージョンが公開

Code Llama はリリースからわずか 2 日で、再び AI コーディングの革命に火をつけました...

人間がロボットや AI より得意とする 7 つの仕事

ロボットや AI は人間が行う多くの作業を実行できますが、人間がロボットよりも上手にできる仕事もまだ...

将来のモバイル通信ネットワーク、6Gと人工知能の統合

将来の 6G ネットワークのより豊富なビジネス アプリケーションと極めて厳しいパフォーマンス要件を満...

あなたは人工知能についてどれくらい知っていますか?普通の人として、私たちはもっと多くのことを知る能力を持っているのでしょうか?

それはとても神秘的で、本当にハイエンドで、急速に発展しています!それは私たちの周りにあり、あなたは気...

この記事ではAIGC(生成型人工知能)の世界を紹介します。

こんにちは、ルガです。今日は、人工知能エコシステムの中核技術である AIGC (「生成型人工知能」の...

2020年に中国で期待されるAI企業トップ10

近年の新興技術として、人工知能は人々の生活のあらゆる側面に静かに浸透し、比較的ホットな産業に発展しま...