毎日のアルゴリズム: 二分木のレベルトラバーサル

毎日のアルゴリズム: 二分木のレベルトラバーサル

[[423982]]

バイナリ ツリーが与えられた場合、そのノード値のボトムアップ レベルのトラバーサルを返します。 (つまり、リーフノードが配置されているレイヤーからルートノードが配置されているレイヤーまで、左から右にトラバースします)

例えば、二分木[3,9,20,null,null,15,7]が与えられた場合、

3

/ \

9 20

/ \

15 7

ボトムアップ レベルのトラバーサルを次のように返します。

  1. [
  2. [15,7]、
  3. [9,20]、
  4. [3]
  5. ]

解決策 1: BFS (幅優先探索)

BFS は、各レイヤーのノードをレイヤーごとに走査します。この質問では各レイヤーのノード値を返す必要があるため、BFS はこの問題に非常に適しています。 BFS は補助構造としてキューを使用する必要があります。まずルート ノードをキューに入れてから、キューのトラバースを続けます。

  1. const levelOrderBottom =関数(ルート) {
  2. if(!root) return []
  3. res = []とします。
  4. キュー = [ルート]
  5. while(キューの長さ) {
  6. curr = []とします。
  7. 温度= []
  8. while(キューの長さ) {
  9. ノードをキュー.shift() にします。
  10. curr.push(ノード.val)
  11. if( node.left ) temp.push ( node.left )
  12. if( node.right ) temp.push ( node.right )
  13. }
  14. res.push(カレント)
  15. キュー =一時 
  16. }
  17. res.reverse()を返す
  18. };

複雑性分析

  • 時間計算量: O(n)
  • 空間計算量: O(n)

ソリューション 2: DFS (深さ優先探索)

DFS は、ツリーのノードをその深さに沿ってトラバースし、ツリーのブランチを可能な限り深く検索します。

この問題における DFS の主な問題は、DFS がレベルを横断しないことです。再帰プロセス中に同じレベルのノードを同じリストに配置するには、再帰中に各ノードの深さを記録する必要があります。新しいノードに再帰する場合は、深さに対応するリストの最後にノードを配置します。

新しい深度 depth にトラバースするときに、depth に対応するリストが最終結果 res に作成されていない場合は、深度のすべてのノードを保存するために res に新しいリストを作成する必要があります。

  1. const levelOrderBottom =関数(ルート) {
  2. 定数res = []
  3. var dep =関数(ノード、深さ){
  4. if(!ノード)戻り値 
  5. res[深さ] = res[深さ]||[]
  6. res[深さ].push(node.val)
  7. dep(ノード.left , 深さ+1)
  8. dep(ノード.right 、深さ + 1)
  9. }
  10. dep(ルート, 0)
  11. res.reverse()を返す
  12. };

複雑性分析:

  • 時間計算量: O(n)
  • 空間計算量: O(h)、ここでhは木の高さ

<<:  ボーダーライン上の質問:テクノロジー企業はAIアルゴリズムを使って従業員の採用と解雇を行っている

>>:  二分木の再帰的および非再帰的トラバーサルアルゴリズムテンプレート

ブログ    

推薦する

...

...

今日のビジネスにおける自然言語処理の 8 つの応用

自然言語処理がどのようにビジネス最適化の実現手段へと進化しているかを学びます。 AI ベースのツール...

どのAIダンスが一番いいですか? Google の 3D ダンサーが音楽に合わせて踊り、DanceNet に挑戦

今回、トランスフォーマーはダンス生成タスクに参加しました。芸術分野では、AIが生成した音楽やAIが描...

配達員に代わるドローン配達は、人々に「嫌われるのではなく愛される」ようになる

現在、人々の生活や仕事のペースはますます加速し、インターネット電子商取引プラットフォームは急速に発展...

2018 年の人工知能の予測を振り返ってみると、どれが現実になったのでしょうか?

人工知能は非常に複雑であり、急速に発展しています。今後数年間でそれがどうなるかを正確に予測することは...

スマート物流の1兆ドル規模の扉が開かれ、物流ロボットがトレンドの先端に立っている

近年、インターネットの急速な発展、電子商取引の加速的な台頭、さまざまな新しいビジネスモデルの急速な実...

月給5万ドルでこのホットなAI分野をマスターするには、これらの9冊の本を読むだけで十分です

はじめに:国内の求人検索サイトのデータによると、2019年現在、上海の自然言語処理(NLP)関連職種...

ByteDance の新しい具現化された知能の成果: 大規模なビデオデータでトレーニングされた GR-1 は、複雑なタスクを簡単に処理します

最近、GPT モデルは NLP の分野で大きな成功を収めています。 GPT モデルは、まず大規模なデ...

...

機械学習とディープラーニングの5つの主な違い

前回のシリーズの記事「機械学習とディープラーニングの違いは何でしょうか?」に続き、簡単に説明した後、...

GNN初心者必読! Google Research が、SOTA グラフ ニューラル ネットワークをゼロから構築する方法を教えます

[[422426]]近年、ニューラル ネットワークは自然言語、画像、音声、その他のデータで大きな進歩...

...

AIが米国の8年生の理科テストに高得点で合格。常識や推論の問題を解くことができ、同じ舞台でAIと競争する準備が整った。

8年生の理科のテストに60点で合格すれば、8万ドル(57万人民元相当)の賞金を獲得できます。 [[...