K 分割交差検証とグリッドサーチ

K 分割交差検証とグリッドサーチ

みなさんこんにちは、私はZhibinです〜

今日は、GridSearch グリッド検索と K 分割相互認証を使用して、決定木モデルのパラメータを調整する方法を紹介します。

前回の記事では、決定木モデルの構築と実践を紹介しました。その時は、max_depth という 1 つのパラメータのみが使用されていました。しかし、実際には、モデルには、criterion (特徴選択基準)、class_weight (クラスの重み) などの他の影響パラメータがあります。より正確な結果を得たい場合は、モデルパラメータを調整し、モデルを構築するための最適なパラメータを見つける必要があります。

1. K分割交差検証

K 分割交差検証では、実際にデータ セットを K 個の部分に分割し、そのたびに K-1 個の部分をトレーニング セットとして選択し、残りの部分をテスト セットとして使用し、K 個のモデルの平均テスト結果を最終的なモデル効果として取得します。次の図に示すように:

K 値の選択はデータ セットのサイズに関係します。データ セットが小さい場合は K 値を増やし、データ セットが大きい場合は K 値を減らしてください。実装コードは次のとおりです。

 sklearn.model_selection から cross_val_score をインポートします
acc = cross_val_score(モデル、X、Y、cv=5)

2. グリッドサーチ

GridSearch は、すべての候補パラメータを走査し、各モデルの有効性と精度を評価し、最終結果として最適なパラメータを選択する、徹底的な検索パラメータ調整方法です。

パラメータ チューニングは、単一パラメータ チューニングと複数パラメータ チューニングに分かれています。Zhibin はそれぞれ例を挙げて紹介します。

(1)単一パラメータチューニング

単一パラメータのチューニングを説明するために、単一パラメータ max_depth を例に挙げます。コードは次のとおりです。

 sklearn.model_selection から GridSearchCV をインポートします
パラメータ = {'max_depth':[1,3,5,7,9]}
grid_search = GridSearchCV(モデル、パラメータ、スコアリング='roc_auc'、cv=5)grid_search.fit(X_train、Y_train)

出力パラメータの最適な結果:

グリッド検索.ベストパラメータ

max_depth パラメータの最適な結果は次のとおりです。

上記で得られた最適なパラメータ値でモデルを再構築し、AUC値が改善されたかどうかを確認します。コードは次のとおりです。

モデル = DecisionTreeClassifier(最大深度=7)
モデルをフィット(X_train,Y_train)
y_pred_proba = model.predict_proba(X_test)
sklearn.metricsからroc_auc_scoreをインポートします
スコア = roc_auc_score(Y_test.values,y_pred_proba[:,1])

得られた AUC 値は次のとおりです。

これは以前の値 0.958 よりも高く、モデルの精度が向上したことを示しています。

(2)マルチパラメータチューニング

決定木モデルには次のパラメータがあります。

これらのパラメータは、構築した決定木モデルの精度に影響します。ここでは、max_depth (最大深度)、criterion (特徴選択基準)、min_samples_split (子ノードを下方に分割するために必要なサンプルの最小数) を例として、マルチパラメータ チューニングを実行します。コードは次のとおりです。

 sklearn.model_selection から GridSearchCV をインポートします
パラメータ = {'max_depth':[5,7,9,11,13],'criterion':['gini','entropy'],'min_samples_split':[5,7,9,11,13,15]}
モデル = DecisionTreeClassifier()
grid_search = GridSearchCV(モデル、パラメータ、スコアリング='roc_auc'、cv=5)
グリッド検索.fit(X_train,Y_train)

出力パラメータの最適値:

グリッド検索.ベストパラメータ

上記で得られた最適なパラメータ値でモデルを再構築し、AUC値が改善されたかどうかを確認します。コードは次のとおりです。

モデル = DecisionTreeClassifier(基準 = 'エントロピー'、最大深度 = 13、最小サンプル分割 = 15)
モデルをフィット(X_train,Y_train)
y_pred_proba = model.predict_proba(X_test)
sklearn.metricsからroc_auc_scoreをインポートします
スコア = roc_auc_score(Y_test.values,y_pred_proba[:,1])

得られた AUC 値は次のとおりです。

これは以前の値 0.985 よりも高く、モデルがさらに最適化されたことを示しています。

<<:  NLP技術の準備——自然言語処理技術はあなたの妻ではありません

>>:  世界の自動運転「M&A」を4大勢力が攻勢

ブログ    
ブログ    
ブログ    

推薦する

機械学習モデルの仕組み

この記事は公開アカウント「Reading Core Technique」(ID: AI_Discov...

アルゴリズムの微積分: 面接で目立つための関数微分公式 5 つ

この記事は、公開アカウント「Reading the Core」(ID: AI_Discovery)か...

AIデザイナー「ルバン」のコア技術が明らかに:1秒間に8,000枚のポスターをデザインする方法とは?

[[228895]] AI は囲碁のゲームを変え、今度はポスターのデザインを変えています。アリババ...

...

...

MetaとMicrosoft、Nvidia GPUの代替として新しいAMD AIチップを購入することを約束

12月7日、Meta、OpenAI、Microsoftは、現地時間水曜日のAMD投資家向けイベントで...

...

...

...

...

米メディア:米国はAI戦争に備えるため同盟国を誘致

ワシントン(AP通信) — 米国とその同盟国は、国防総省の人工知能部門が立ち上げた新しいフォーラムを...

MITは液体のような動的変化に適応できるLiquid機械学習システムを提案

自動運転などの多くの重要なアプリケーションでは、データはリアルタイムかつ動的であり、予期しない状況が...

スマートコミュニティはどれくらい「スマート」なのでしょうか?知能の背後にある技術的応用を解釈する

モノのインターネット技術の発展と普及に伴い、WIFi、GPRS、LoRaWANなどの通信プロトコルが...

今後の展望:自動運転におけるビッグモデル技術の応用と影響

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

...