442人の著者による100ページの論文! Googleは2年かけて大規模モデル向けの新しいベンチマーク「BIG-Bench」をリリースした。

442人の著者による100ページの論文! Googleは2年かけて大規模モデル向けの新しいベンチマーク「BIG-Bench」をリリースした。

1 件の AI 論文、442 人の著者。

著者の貢献のために特別な章も設けられています。

100ページのうち半分以上が参考文献です。

いや、最近こういう紙が流行ってるんじゃないの?

こちらが Google の最新の論文です – 模倣ゲームを超えて: 言語モデルの機能を定量化し推定する。

すると著者欄はこうなります…

132 の機関の研究者が 2 年間をかけて、大規模言語モデルの新しいベンチマークであるBIG-bench を提案しました。

これを基に、モデル規模が 6 桁に及ぶ OpenAI の GPT モデル、Google 内部の高密度トランスフォーマー アーキテクチャなどを評価しました。

最終結果は、規模の拡大とともにモデルのパフォーマンスは向上するものの、依然として人間のパフォーマンスには程遠いことを示しています。

この作品に対して、ジェフ・ディーンさんは「素晴らしい作品だ」とリツイートして「いいね」しました。

大規模言語モデルの新しいベンチマーク

この論文に何が書いてあるか見てみましょう。

規模が大きくなるにつれて、モデルのパフォーマンスと品質はある程度向上し、変革的な影響が出る可能性があります。しかし、これらの特性はこれまで十分に説明されていませんでした。

既存のベンチマークの中には、評価範囲が狭い、パフォーマンス スコアがすぐに飽和状態になるなどの制限があるものもあります。

たとえば、SuperGLUE では、ベンチマークの開始から 18 か月以内に、モデルは「超人的な」パフォーマンスを達成しました。

このような背景から、BIG-benchは誕生しました。

現在、言語学、子どもの発達、数学、常識的推論、生物学、物理学、社会的偏見、ソフトウェア開発などの問題をカバーする 204 のタスクで構成されています。

さらに、人間の専門家審査員団もすべてのタスクを実行し、ベースライン レベルを提供しました。

より多くの機関での使用を促進するために、研究者らは、より迅速な評価のための小規模ながら代表的なタスクのサブセットである BIG-bench Lite も提供しました。

また、ベンチマーク API を実装するコードもオープンソース化しており、公開されているモデルでのタスク評価と新しいタスクの軽量作成をサポートしています。

最終的な評価結果では、スケールが 6 桁に及び、モデル サイズとトレーニング サンプル数の増加に伴い、BIG-bench の全体的なパフォーマンスが向上することが示されています。

しかし、人間のベースラインレベルと比較すると、パフォーマンスはまだ低いです。

特に一部のタスクでは、規模が大きくなるにつれてモデルのパフォーマンスが着実に向上します。しかし、時には、特定の規模で突然、ブレイクアウトパフォーマンスが発生することもあります。

さらに、社会的偏見のモデルを評価することもできます。

さらに、彼らは予想外に、モデルがいくつかの隠れたスキルを獲得できることも発見しました。たとえば、チェスで合法的な動きをする方法などです。

著者の寄稿: 14 ページ

著者が多すぎるためか、論文の最後に著者の貢献を記録するための特別な章が用意されていることは言及する価値がある。

これは 14 ページにわたる記事で、主要な貢献者、レビュー担当者、タスク提供者などが含まれています...

残りは50ページの参考文献です。

さて、興味のある方は下のリンクをクリックして論文を読んでみてください。

論文リンク:

https://arxiv.org/abs/2206.04615

GitHub リンク:

https://github.com/google/BIG-bench

参考リンク:

https://twitter.com/jaschasd/status/1535055886913220608

<<:  合成データは AI/ML トレーニングの未来を推進するでしょうか?

>>:  Google の研究者が発狂: AI に人格があると信じ、有給休暇を取得し、チャットログが恐ろしい

ブログ    
ブログ    
ブログ    

推薦する

AIが中古高級品の真贋を判別、同社は精度は99.1%と主張

12月26日、高級品鑑定機関Entrupyは人工知能技術を使用して、さまざまなブランドのハンドバッグ...

脳内の画像を高解像度で復元できるようになりました

近年、画像生成、特にテキストから画像への生成の分野で大きな進歩が遂げられており、アイデアをテキストで...

アルトマン氏がOpenAIの役員に復帰: 3万件の文書を読んだ後、調査チームは

オープンAIのCEOサム・アルトマン氏は、昨年の同社の経営混乱時の同氏の行動が「強制解雇には当たらな...

初め!プログラム可能なメモリスタコンピュータが誕生しました!

[[271164]]人類史上初のプログラム可能なメモリスタ コンピュータが誕生しました。音声コマン...

...

マイクロソフトはAIを活用して新しい電池材料を選別し、電池のリチウムの70%をナトリウムに置き換える

1 月 10 日、マイクロソフトの量子コンピューティング チームは、米国エネルギー省傘下のパシフィッ...

世界を変えるために活動する5つのAIスタートアップ

ディープラーニングとニューラル ネットワークの進歩により、自然言語処理とコンピューター ビジョンに大...

機械学習がインドのヘルスケア分野に変化をもたらす

ヘルスケア産業はインド経済において最大のセクターの一つとなっている。 NITIAyogの報告によると...

...

ByteDanceが大規模モデルトレーニングフレームワークveGiantModelをオープンソース化、パフォーマンスが最大6.9倍向上

最近、ByteDanceの応用機械学習チームは、veGiantModelという大規模モデルトレーニン...

...

AI、エッジコンピューティング、IoT、クラウドコンピューティングが車両管理をどのように変えるのか

毎日生成されるデータの量は増加し続けています。その結果、これらの企業はこれまで以上に多くのデータを保...

...

生成 AI: サイバーセキュリティにとってのメリットか、それとも危険か?

脅威の状況が絶えず変化する中、高度なサイバー攻撃に対する防御手段として、生成型人工知能 (GAI) ...

...