研究者は、新たに開発された人工知能技術の助けを借りて、大量の画像を分析し、分類およびマイニング可能なデータを抽出して、近隣地域の収入レベル、政治的傾向、買い物習慣などを予測することができます。
スタンフォード大学の研究者らは、Google ストリートビューで収集された何百万枚もの写真を分析することで、地域の投票パターンを正確に予測するという野心的なプロジェクトを完了した。これは、コンピューターがテキストを分析するのと同じくらいスムーズに画像を分析できる可能性があることを示しています。 他の学術プロジェクトではすでにAIを使用してGoogleストリートビューから道路の変化などの社会的洞察を抽出していますが、このプロジェクトはプロセス中にAIソフトウェアによって処理される画像の数が多い点で注目に値します。 スタンフォード大学のコンピュータービジョン科学者ティムニット・ゲブル氏が率いる研究者らは、ソフトウェアを使用してストリートビューの約5000万枚の画像と位置データを分析した。彼らの目標は、郵便番号や地区レベル(通常は約 1,000 人)で予測を行うために使用できる人口統計データを見つけることです。 これらの画像から、約 2,200 万台の車両 (国内の全自動車の 8%)、3,000 の郵便番号、および 39,000 の投票区に関する情報が収集されました。研究者たちは、このデータを国勢調査局のアメリカコミュニティ調査や大統領選挙の投票記録などの他の情報源と相互参照し、近隣地域の収入、人種、教育、投票パターンを正確に予測できることを発見した。 AIアルゴリズムに正確に自動車を分類させるため、研究者らはMechanical Turkなどのサイトから何百人もの人材や自動車の専門家を募集し、何百万枚もの画像から自動車を識別させる訓練を行った。最終的に、彼らのソフトウェアはわずか 2 週間で 5,000 万枚の画像内の自動車を分類できるようになりました。ニューヨークタイムズ紙は、人間がこの課題を達成するには少なくとも15年かかるだろうと報じた。 米国科学アカデミー紀要に掲載された論文の中で、研究チームは、自分たちの技術が毎年2億5000万ドル以上かかるアメリカコミュニティ調査を補完できる可能性があると記している。この調査は調査員が戸別訪問するなど労働集約的な作業であるため、人口6万5000人未満の小さな地域が見落とされてしまうことも少なくない。テクノロジーが進歩するにつれて、人口統計データは最終的にはリアルタイムで更新されるようになるかもしれません。しかし研究者らは、政策立案者は個人のプライバシーを保護するためにデータがコミュニティレベルでのみ収集されるように注意する必要があると指摘している。 |
<<: 百度の新しいAI翻訳機は80以上の言語をリアルタイムで翻訳できる
>>: ディープラーニングを使って背景を除去し、切り抜きを実現する方法の詳細な説明
最近、世界最速のエンタープライズ レベルのグラフ分析プラットフォームである TigerGraph は...
組織はセンサーや監視を通じて職場のセキュリティと従業員の安全性を向上させるために生体認証を使用できま...
中国気象局は7月29日、「人工知能気象応用作業計画(2023-2030年)」を発表し、国内の人工知能...
LangChain、OpenAI、PineconeDB を使用して、任意のデータ ソースから質問応答...
Baidu Smart Cloud は、中国で最も繁栄した AI ネイティブ産業エコシステムを確立し...
1. 背景指標はビジネスと密接に関係しており、その価値は、問題点やハイライトを発見し、タイムリーに...
機械学習やその他の技術をバックグラウンドで使用することで、AI は私たちの日常生活に多くの素晴らしい...
[[348166]]導入2020年は世界にとって激動の年です。経済状況は流行病の影響を受けており、不...
近年、飛行制御、ナビゲーション、センシングなどの技術の急速な発展に伴い、ドローン業界はますます大きく...
この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...
この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...