7つの便利なプロンプトパラメータ

7つの便利なプロンプトパラメータ

ChatGPT と Midjournal により、生成 AI のアプリケーションが急増しました。生成 AI について言及する場合、「プロンプト」は通常、入力としてモデルに与えられる最初のヒントまたは指示を指します。これは、モデルが関連する応答またはテキストを生成するようにガイドするフレーズ、質問、文、または段落です。

生成 AI モデルを使用する場合、モデルが生成する内容と品質に直接影響するため、明確で具体的なプロンプトを提供することが重要です。適切なプロンプトは、必要なタスク、トピック、または予想される応答を明確に指定し、モデルの生成プロセスをガイドするのに十分なコンテキストを提供する必要があります。

この記事では、モデルをガイドし、その機能と制限を調査し、さまざまなスタイルや角度のコンテンツを生成するために使用できる 7 つの主要なプロンプト パラメーターを紹介します。

1. コンテキストウィンドウ

コンテキスト ウィンドウ パラメータは、応答を生成するときにモデルが考慮するテキストの量を決定します。コンテキスト ウィンドウを調整することで、モデルが出力を生成するときに考慮するコンテキストのレベルを制御できます。小さいコンテキスト ウィンドウは現在のコンテキストに焦点を合わせ、大きいコンテキスト ウィンドウは古いコンテンツを提供します。たとえば、コンテキスト ウィンドウを 100 トークンに設定すると、モデルは入力テキストの最後の 100 トークンのみを考慮します。

2. トークンの最大数

最大トークン パラメータは、生成される応答内のトークンの最大数を定義します。トークンは、単語または文字であるテキストの最小単位と考えることができます。最大トークン値を設定することで、生成される出力の長さを制限できます。たとえば、最大トークン値を 50 に設定すると、モデルは最大 50 個のトークンを含む応答を生成します。

3. 温度

温度は、生成される出力のランダム性を制御するパラメーターです。温度値が高いほど(1.0 など)、生成されるテキストのランダム性と多様性が増します。一方、0.2 などの低い温度値では、より集中的で明確な応答が生成されます。温度を調整すると、モデルの創造性と探索能力に影響を与える可能性があります。

4. トップP

Top P はカーネル サンプリングまたは確率サンプリングとも呼ばれ、生成された応答内の次のトークンをサンプリングするために使用される累積確率分布を決定します。 top P の値を設定することで、出力の多様性を制御できます。最大 P 値が高いモデル (例: 0.9) では、サンプリング時に考慮されるオプションが増えるため、結果の多様性が高まります。逆に、P 値が低い場合(0.3 など)、選択が制限され、より焦点を絞った結果が生成されます。

5. トップN

Top N は、Top p と同様に、次のトークンをサンプリングするための別のパラメーターです。ただし、累積確率分布を使用する代わりに、Top N は各ステップで最も可能性の高い上位 N 個のタグのみを考慮します。上位 N 値を調整することで、生成される出力の多様性を管理することも可能です。

6. ペナルティがある

プレゼンス ペナルティは、モデルが生成された応答で特定の単語やフレーズに言及するのを防ぐために使用されます。より高いプレゼンス ペナルティ値 (2.0 など) を割り当てると、特定の単語またはフレーズが出力に表示される可能性を減らすことができます。このパラメータは、生成されたテキスト内の特定のコンテンツや逸脱を回避したい場合に役立ちます。

7. 頻度ペナルティ

頻度ペナルティは、生成された出力内の単語またはフレーズの繰り返しを制御するために使用できる別のパラメーターです。 1.5 などの高い頻度ペナルティ値を設定すると、同じ単語やフレーズが過度に繰り返される場合にモデルにペナルティを課すことができます。これにより、より多様な結果を生み出すことができます。

要約する

ChatGPT のような生成 AI モデルから目的の出力を得るには、Prompt パラメータを理解して活用することが重要です。これらのパラメータを調整することで、モデルの動作を微調整し、ニーズに合った応答を生成するようにモデルを導くことができます。適切なプロンプトを選択することは、生成 AI を使用する上で重要なステップであり、ニーズと期待を満たすテキスト生成結果を取得し、会話、作成、質問への回答などのアプリケーションで役立つ出力を提供するのに役立ちます。

<<:  ポイントトラッキングが不要になり、DragGAN の欠陥を克服します。 USTCと上海AIラボが共同でFreeDragをリリース:セマンティックコンテンツの安定したドラッグ

>>:  ゼロシューテクノロジーのCTO、ラン・チュンジア氏:ブロックチェーンと人工知能の交差点はデータにある

ブログ    

推薦する

人工知能による画像認識では、データのラベル付けはどのように機能するのでしょうか?

画像処理技術の急速な発展に伴い、画像認識技術が生まれ、発展し、徐々に人工知能分野の重要な部分となり、...

5GとAI: 現在と未来の補完的なテクノロジー

人工知能と5G、そしてそれらがもたらす変革の可能性は、テクノロジーの世界で大きな注目を集めています。...

データとAIが現代の人事慣行をどのように変えているのか

今日の人事チームにはバランスを取ることが求められています。一方では、データと AI の力を活用してビ...

...

AIツールClaude 2が世界中で利用可能に:ファイルのアップロードとより長い応答テキストをサポート

10月18日、Anthropicは今年7月に新しいClaude 2言語モデルをリリースしました。 C...

2020年に人工知能を変える8つのトレンド

人工知能は長い間、架空の物語、SF、さらには映画にも登場してきました。人々の目には、これは技術的な魔...

マイクロソフトはソフトからハードへの変革に向けてカスタム AI チップを開発中。その計画とは?

噂は本当で、Microsoft は大規模な言語モデルのトレーニングに使用できるカスタム AI チップ...

OpenAI の組み込み検索は本当に便利ですか?定量的な評価により、より深い理解が得られます。

ベクターデータベースの強力なライバルが登場するか?トラック関連のスタートアップ企業がまたもや倒産しそ...

AIがタンパク質構造を予測し、サイエンス誌とネイチャー誌の年間技術革新として掲載され、無限の可能性を秘めている

2021 年に AI 分野で最も画期的な賞を授与するとしたら、誰を選びますか? 「サイエンス」と「ネ...

企業は人工知能の可能性に目がくらんでいるのでしょうか?

多くの企業が AI イニシアチブの導入に意欲的に取り組んでいる一方で、AI が自社のビジネスにどのよ...

...

興奮はテレビシリーズに匹敵、マスク氏とウルトラマン、そしてOpenAIとの「愛憎関係」

最近、マスク氏がOpenAIを訴えたというニュースがテクノロジー界に再び波紋を巻き起こしている。 1...

...