フォーカス分析: 動画向けAIと画像向けAIの違い

フォーカス分析: 動画向けAIと画像向けAIの違い

[51CTO.com クイック翻訳] 画像処理と比較すると、ビデオから洞察を抽出したり、AI 技術を使用したりすると、新たな課題が生じる一方で、かなりの最適化のメリットも得られます。ビデオ AI は、ビデオ映像から特定のフレームを抽出し、各フレームに対してコンピューター ビジョン アルゴリズムを実行するだけだという誤解があります。このアプローチは確かに機能しますが、真の分析的洞察は得られません。本日の記事では、単一のビデオ フレームを処理するこのアプローチの欠点の例をいくつか見ていきます。ただし、スペースの制限により、これらの欠点を克服するために必要な他のアルゴリズムについては詳しく説明しません。興味のある方は、このような目標を達成できるさまざまな特定のビデオ アルゴリズムを提供する Video Indexer を参照してください。

ビデオに映っている人々

次の[ビデオ]の最初の25秒を見てみましょう。

この 25 秒間、ダグは常に画面に表示されていることに注意してください。

ダグのビデオ出演のタイムラインを描くと、次のようになります。

このプロセス中、ダグはカメラの方を向いていないことに注意してください。動画の7秒目で彼はエミリーを見つめており、23秒目にも同じことが起こります。

ビデオのその時間帯に顔検出を実行すると、Doug の顔は検出されません (次のスクリーンショットを参照)。

つまり、各ビデオフレームに対して顔検出のみを実行すると、上記のようなタイムラインを描画することはできません。このようなタイムラインを取得するには、ビデオセグメント全体で顔を追跡し、その中に表示される顔の横顔ビューを考慮できる必要があります。 Video Indexer は顔を追跡できるため、先ほど示したタイムライン全体を表示できます。

光学文字認識を使用してトピック/キーワードを抽出

次の2つのフレームをご覧ください。

[[220618]]

これら 2 つのフレームは、講演者がステージ上でスピーチをしているビデオからのもので、講演者の背後の壁に「Microsoft」という単語が現れたり消えたりしています。私たち人間の視聴者は、確かに「Microsoft」と書かれていることは容易に推測できます。しかし、これら 2 つの画像に対して OCR を実行すると、出力は「Microsc」と「crosoft」のみになります。ビデオ編集でビデオ フレームの完全なシーケンスを処理すると、このような不完全な単語が多数生成されます。映像から正確で完全な語彙を正常に抽出するには、この部分的な語彙にアルゴリズムを適用する必要があります。 Video Indexer はこの機能を有効にし、ビデオからのより優れた分析情報を提供します。

顔認識

顔認識システムは、さまざまな人間のオブジェクトのトレーニング画像のセットを含む顔データベースで構成されています。また、クエリ画像から顔の特徴を抽出し、顔のデータベースと照合するためのクエリ機能も提供します。クエリ関数の出力には、信頼度値とともに一致する可能性のあるリストが含まれます。クエリ関数の出力品質は、顔データベースとクエリ画像の実際の品質によって異なります。

ビデオ処理シナリオでは、複数のビデオ フレームが含まれ、キャラクターはさまざまな頭の姿勢と照明条件で表示されます。確かに、各キャラクターが登場するフレームごとに顔認識システムにクエリを実行することはできますが、このアプローチでは顔のマッチングの結論が異なり、フレーム間で信頼度の値に大きな差が生じる可能性があります。つまり、顔の一致結果を決定するには、追加のロジック レイヤーを使用する必要があります。最適化の手段として、対象となる顔認識システムのクエリに適したフレームのサブセットを選択し、システムへの実際のクエリ数を減らすことができます。

ビデオを処理する際に、複数のビデオ フレームからの人物のトレーニング画像を使用して変化する傾向を分類することで、顔データベースを構築および強化することもできます。さらに、フレーム間で文字を追跡するロジックを構築し、ヒューリスティックを使用して変更を評価することもできます。 Video Indexer でもこの機能を実現できるため、ユーザーは現在のビデオからより高品質の顔データベースを構築できるようになります。

元のタイトル: ビデオ向け AI と画像向け AI の違い

AIに関するその他のコンテンツについては、公式アカウント「AI Pusher」をフォローしてください。

[51CTOによる翻訳。パートナーサイトに転載する場合は、元の翻訳者と出典を51CTO.comとして明記してください]

<<:  ユーザーの検索ログに基づくマルチタスク学習による商品タイトル圧縮手法

>>:  JDロジスティクスは知能を高めつつ、宅配業者から仕事を奪っている

ブログ    
ブログ    

推薦する

...

人工知能のいくつかの重要な技術をご存知ですか?

今日は人工的にしか開発できない重要な技術をいくつか紹介します。音声認識からスマートホーム、人間と機械...

AI、新たなアリババとテンセント

インターネット時代の恩恵が徐々に薄れていくにつれ、プレイヤーは次の発展のトレンドを求めて模索と実践を...

顔認識を行うときになぜ服を着なければならないのですか?

人工知能の応用として、顔認識技術は私たちの生活のあらゆる側面に浸透しています。本人認証には顔認識が必...

...

...

自動運転のための2Dおよび3D視覚認識アルゴリズムについて話す

環境認識は自動運転における最初のリンクであり、車両と環境を結び付けるものです。自動運転システムの全体...

Canvasの画像認識技術とインテリジェントデザインについて考える

[[403856]]著者は最近、フロントエンドの視覚化と構築の技術を研究しています。最近、設計図に基...

...

...

AIを使用してC++、Java、Pythonコードを翻訳し、最大成功率は80.9%です。

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

AIがマーケティングオーディエンスの洞察をどのように変えるのか

[[429813]]人工知能は、企業のマーケティング範囲の拡大に大きく貢献することが証明されています...

AIによる地震予測はテストで有望性を示す

人工知能の助けを借りて地震を予測する新たな試みにより、この技術が将来、人々の生活や経済への壊滅的な影...

データ構造とアルゴリズム: 奇数偶数による配列のソート II

[[429517]]簡単なシミュレーション問題、ぜひ挑戦してみてください!配列を偶数/奇数でソート...

世界はとても広い。AIがあなたと一緒に世界を旅します

[オリジナル記事は51CTO.comより] 私の周りには、「世界は広いから、外に出て旅をしたい」と言...