ジェネレーティブ AI が画像検索をどのように再定義するか

ジェネレーティブ AI が画像検索をどのように再定義するか

翻訳者 |李睿

レビュー | Chonglou

生成AI は、ユニークなテキスト、サウンド、画像を作成できる機能により、ここ数か月で大きな関心を集めています。しかし、生成AI の力は新しいデータの作成に限定されません。

トランスフォーマーや拡散モデルなどの生成 AI の基礎となる技術は、情報の検索や発見など、他の多くのアプリケーションにも活用できます。特に、生成 AI は画像検索に革命をもたらし、これまでは不可能だった方法で視覚情報を探索できるようになる可能性があります。

生成 AI が画像検索エクスペリエンスをどのように再定義しているかについて、知っておくべきことを紹介します。

画像とテキストの埋め込み

従来の画像検索は、画像に付随するテキストの説明、タグ、その他のメタデータに依存しているため、ユーザーの検索オプションは画像に明示的に添付された情報に限定されます。画像をアップロードする人は、自分の画像が他の人に確実に見つかるように、入力する検索クエリの種類について慎重に考える必要があります。画像を検索する場合、情報を探しているユーザーは、画像をアップロードした人が画像にどのような説明を追加したかを想像する必要があります。

諺にもあるように、「一枚の写真は千の言葉に値する」。画像を説明する際に書ける内容には限界があります。もちろん、これは人々が画像をどのように見るかに応じてさまざまな方法で説明できます。人々は写真内のオブジェクトに基づいて検索することもあれば、スタイル、照明、場所などの特徴に基づいて画像を検索することもあります。残念ながら、画像にこのような豊富な情報が付随することはめったにありません。多くの画像が多くの人によってアップロードされていますが、添付情報がほとんどないかまったくないため、検索で見つけるのが困難です。

ここでAI画像検索が重要な役割を果たします。 AI画像検索にはさまざまなアプローチがあり、さまざまな企業が独自の技術を持っています。しかし、これらの企業に共通する技術がいくつかあります。

AI 画像検索、そして他の多くのディープラーニング システムの中心にあるのは、さまざまなデータ タイプを数値的に表現した埋め込みです。たとえば、解像度が 512×512 の画像には、約 260,000 個のピクセル (または機能) が含まれます。埋め込みモデルは、何百万もの画像でトレーニングすることで、視覚データの低次元表現を学習しようとします。画像の埋め込みには、画像の圧縮、新しい画像の生成、異なる画像の視覚的特性の比較など、多くの便利な用途があります。

同じメカニズムがテキストなどの他の形式にも適用されます。テキスト埋め込みモデルは、テキスト抜粋のコンテンツの低次元表現です。テキスト埋め込みには、大規模言語モデル (LLM) の類似性検索や検索強化など、多くの用途があります。

AI画像検索の仕組み

原理

ただし、画像とテキストの埋め込みを一緒にトレーニングすると、さらに興味深いことが起こります。 LAION のようなオープンソース データセットには、何百万もの画像とそれに対応するテキストの説明が含まれています。テキストと画像の埋め込みがこれらの画像/キャプションのペアで共同でトレーニングまたは微調整されると、視覚情報とテキスト情報の関連性が学習されます。これは、Contrastive Image Language Pre-training (CLIP) などのディープラーニング技術の背後にある考え方です。

コントラスト画像言語事前学習(CLIP)モデルは、テキストと画像の結合埋め込みを学習します。

現在では、テキストを視覚的な埋め込みに変換できるツールが存在します。このジョイント モデルにテキスト記述が提供されると、テキスト埋め込みとそれに対応する画像埋め込みが作成されます。その後、画像の埋め込みをデータベース内の画像と比較し、それに最も関連性の高い画像を取得できます。これが基本的に AI 画像検索の仕組みです。

このメカニズムの優れた点は、視覚的特徴のテキストによる説明がメタデータに登録されていない場合でも、ユーザーがその説明に基づいて画像を検索できることです。 「朝霧に包まれた緑豊かな森、背の高い松の木の間から差し込む明るい日差し、草の上に生えているキノコ」など、これまでは不可能だった豊富な検索用語を使用できます

上記の例では、AI 検索によって、このクエリに一致する視覚的特徴を持つ画像のセットが返されました。テキストの説明の多くにはクエリ キーワードが含まれていません。しかし、それらの埋め込みはクエリの埋め込みと似ています。 AI 画像検索がなければ、適切な画像を見つけるのはさらに困難になります。

発見から創造へ

時には、人々が探している画像が存在せず、AI を利用した検索でも見つけられないことがあります。この場合、生成 AI は 2 つの方法のいずれかでユーザーが望ましい結果を達成できるように支援できます。

最初のアプローチは、ユーザーのクエリに基づいて最初から新しいイメージを作成することです。この場合、テキストから画像への生成モデル ( Stable Diffusionや DALL-Eなど) は、ユーザーのクエリの埋め込みを作成し、それを使用して画像を作成します。生成モデルは、Contrastive Image Language Pre-training (CLIP) などの共同埋め込みモデルや、 Transformerや Diffusion モデルなどの他のアーキテクチャを活用して、埋め込まれた数値を魅力的な画像に変換します。

DALL-Eは、対照画像言語事前トレーニング(CLIP)と拡散法を使用してテキストから画像を生成します。

2 番目のアプローチは、既存の画像を取得し、生成モデルを使用して好みに合わせて編集することです。たとえば、松林に戻った写真では、草原のキノコが消えています。ユーザーは、適切と思われる画像の 1 つを開始点として使用し、生成モデルを使用してそれにキノコを追加できます。

生成 AI は、発見と創造性の境界を曖昧にするまったく新しいパラダイムを生み出します。ユーザーは単一のインターフェースから画像を検索したり、編集したり、まったく新しい画像を作成したりできます。

原題:生成 AI が画像検索をどのように再定義するか、著者: Ben Dickson


<<:  Google CEO ピチャイ: 新しい AI 製品のサブスクリプション モデルを検討中

>>: 

ブログ    

推薦する

...

中国建設銀行のAI戦略

中国建設銀行の田国利会長は、「金融テクノロジーによってもたらされた包括的金融の伝統的なモデルの破壊的...

アルトマン:解雇されて戻ってくるのは辛かったが、OpenAIにとっては良いことだ

1月8日、OpenAIのCEOサム・アルトマン氏は、タイム誌編集長とのインタビューで、昨年末に同社と...

エッジAIの台頭

「今日のテクノロジーの世界では、クラウドにおける AI とエッジにおける AI の統合が重要です」と...

2021 年の機械学習の 6 つのトレンド

機械学習は今日ではよく知られた革新的な技術となっています。ある調査によると、現在人々が使用しているデ...

OpenAI: ChatGPTはクローラープロトコルに準拠し、ウェブサイトは無料での使用を拒否できる

ChatGPT によってウェブサイトのデータが盗まれるのを防ぎたいですか?ついに解決策が見つかりまし...

これを携帯電話の代わりにしたいですか?ネットで人気急上昇のAIハードウェアが衝撃を受ける:Google Glass + ポケベル

たったこれだけで、携帯電話を交換したいですか?最近話題になっている新しいAIデバイス「AI Pin」...

360はウォータードロップライブを永久に閉鎖し、セキュリティ監視に注力すると発表した。

360は12月20日、Water Dropライブストリーミングプラットフォームを積極的に永久に閉鎖...

機械学習の問題を解決する一般的な方法があります!この記事を1つだけ読んでみてください!

[[205485]]アビシェーク・タクル編集者: Cathy、Huang Wenchang、Jia...

起業の触媒としての AI: AI が提供できるものと提供できないもの

AI は、その潜在的パワーにもかかわらず、ビジネスを前進させるイノベーションの創出や推進において補助...

「知的障害ロボット」が解雇に直面

最近、ストレンジという日本のロボットホテルが「ロボット従業員」の半数を解雇した。ロボットに仕事を奪わ...

OpenAIの年間収益は13億ドルに達し、月間1億ドル以上となり、夏に比べて30%増加した。

10月13日、The Informationは現地時間12日、複数の関係者の話として、OpenAI...

モザイクも安全ではないのですか? 「ブロックバスター」のモザイクはAIによってワンクリックで削除可能

知っていましたか?モザイクはもう安全ではありません!こんにちは、友人の皆さん。私は Jiguo.co...

...

人工知能によるモザイク除去ディープ CNN デノイザーと多層隣接コンポーネント埋め込みによるモザイク除去

モザイク除去のための人工知能、ディープ CNN デノイザーとモザイク除去のための多層隣接コンポーネン...