セキュリティ企業:ホワイトハットの60%以上が生成AIに興味を持っており、脆弱性を見つける最大の動機は金儲けである

セキュリティ企業:ホワイトハットの60%以上が生成AIに興味を持っており、脆弱性を見つける最大の動機は金儲けである

セキュリティ企業であり脆弱性報奨金プラットフォームでもあるHackerOneは10月30日、先週2023年のハッカー主導のセキュリティレポートを発表し、ハッカーの61%がより多くの脆弱性を発見するために生成AIを使用してさまざまなハッカーツールを開発していることを明らかにした。

HackerOneは昨年6月から今年9月にかけて、主にプラットフォームに協力したホワイトハット2,000人を対象にこの調査を開始したと報じられている。報告書によると、ホワイトハットが脆弱性を見つける最大の動機は金儲けで80%を占めるが、学習目的が78%にも上り、さらに47%は「一般ユーザーの安全を守るため」と答えた。

ホワイトハットが脆弱性を提出しない主な理由としては、企業の対応が遅い(60%)、コミュニケーションが衝突を招く(55%)、ボーナスが低すぎる(48%)、企業の外部評価が悪すぎる(44%)などが挙げられます。

ホワイトハットは、生産性の向上と競争力の維持の両方を実現できると信じ、新たな生成型 AI テクノロジーにも関心を持っています

  • ホワイトハットの66%が、現在、または今後、レポート作成に生成AIを使用していると回答
  • ホワイトハットの61%が、より多くの脆弱性を見つけるために生成AIに基づくツールを開発している。
  • ホワイトハットの55%は、生成AIツール自体が今後数年で攻撃の標的になる可能性があると考えている。
  • ホワイトハットの53%が、生成AIを使ってプログラムを書くと答えた。
  • ホワイトハットの33%は、生成AIを使用してプログラミング言語の敷居を下げたいと考えている
  • ホワイトハットの14%がすでに生成AIを重要なツールとみなしている

▲ 画像出典: HackerOne

ホワイトハットがターゲットとする分野のうち、オンライン サービスが 1 位でベースの 58% を占めています。金融サービスが 2 位でベースの 53% を占めています。小売および電子商取引プラットフォームが 3 位でベースの 48% を占めています。コンピューター ソフトウェアがベースの 43% を占めています。政府機関および組織が 40% を占めています。

IT Home はまた、このレポートから、ホワイトハットの 95% が Web ページのテスト能力を持ち、63% が脆弱性の調査を専門とし、47% がネットワーク侵入テストに重点を置き、40% がレッドチーム テストに重点を置き、20% がソーシャル エンジニアリングに長け、18% がワイヤレス侵入テストに長けていることも知りました。

ホワイトハットハッカーは主にハッキング技術を使用してウェブサイトに侵入しており、その割合は 98% です。そのうち 55% は API を攻撃するために使用され、43% は Android ソフトウェアを攻撃し、23% はオープンソース プロジェクトを攻撃し、iOS とデスクトップ プラットフォームを攻撃することを選択するのはわずか 17% です。

<<:  ヘルスケアにおける GenAI の利点

>>: 

ブログ    
ブログ    
ブログ    

推薦する

自動運転の 3 つの大きな問題点、つまり安全性に直接対処しますか?プレミアム?プライバシー漏洩?

2021年の上海モーターショーが終わったばかりですが、会場内外で自動運転が大きな注目を集めています...

2019 年に学ぶべき 10 個の機械学習 API

最近では、携帯電話の写真からメールの受信トレイのフィルターまで、機械学習はあらゆるところに存在してい...

役に立たない、それとも翻訳ツール?日本が「会話」できるスマートマスクを発明

マスクが翻訳機の仕事を引き継ごうとしている。 最近、日本のスタートアップ企業が、マスクを着けていると...

...

素晴らしいディープラーニング コース 8 つ (評価付き)

エンジニアリング分野では、機械学習の応用は想像されているほど一般的ではありませんが、ディープラーニン...

ByteDanceがCowClipをオープンソース化:推奨モデルのシングルカードトレーニングを最大72倍高速化可能

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

...

...

人工知能(AI)がビデオマーケティングを変える

ビデオ マーケティングで人工知能 (AI) を使用すると、企業はユーザーの好みを分析してカスタマイズ...

ニューラルネットワークをシンボリックAIに活用し、MITとIBMが共同でディープラーニングの問題点を解決

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

Transformer には新しいバリアント ∞-former があります: 無限の長期メモリ、任意の長さのコンテキスト

[[422086]]過去数年間で、Transformer は NLP 分野全体をほぼ支配し、コンピ...

...

90年代以降の世代初登場!何凱明と孫建のチームが未来科学賞を受賞し、ResNetは18万回引用された。

先ほど、2023年未来科学賞の受賞者が発表されました!今年の「数学およびコンピューターサイエンス賞」...

AI言語モデルにおける幻覚バイアスのリスク

音声アシスタントからチャットボットまで、人工知能 (AI) はテクノロジーとのやり取りの方法に革命を...

人工知能は伝染病との戦いにおいてどのような役割を果たすのでしょうか?

新型コロナウイルスは間違いなく2020年で最もホットな話題であり、流行の防止はすべての国にとって最優...