手書きの最も単純なLRUアルゴリズム

手書きの最も単純なLRUアルゴリズム

1 LRUとは何か

LRU (Least Recently Used) は、最も最近使用されていないデータです。その基本的な考え方は、「データが最近アクセスされた場合、将来アクセスされる可能性が高くなる」というものです。したがって、LRU アルゴリズムは、過去のアクセス レコードに従ってデータを並べ替えます。十分なスペースがない場合は、最も最近使用されていないデータが削除されます。

2 LRU実装の原則

LRU アルゴリズムは最近使用されたデータを優先するため、ソートをサポートするデータ構造が必要であり、リンク リストが非常に適しています。

配列を検討してみませんか?

LRU アルゴリズムは一般的にアクセス頻度の高いシナリオで使用されるため、データの移動は頻繁に行われます。配列を移動したら、移動した値の後ろにあるすべてのデータの位置を変更する必要があります。これは非効率的であり、推奨されません。

3. 双方向リンクリストのLinkedHashMap

先ほど、LRU アルゴリズムの実装はリンク リストを使用して実装できることを分析しました。Java の LinkedHashMap は双方向のリンク リストです。

LinkedHashMap は HashMap のサブクラスです。HashMap データ構造に基づいて、すべてのエントリをリンクする双方向リンク リストも維持します。このリンク リストは反復順序を定義します。これは通常、データが挿入される順序です。

LinkedHashMap のソースコードを見てみましょう。

ソース コードの定義から、accessOrder プロパティで LinkedHashMap をトラバースする順序を指定できることがわかります。true はアクセス順序、false は挿入順序を意味し、デフォルトは false です。

LRU はアクセス順序に敏感なので、単純に検証するために true を使用します。

  1. パブリッククラスLRUTest {
  2. 公共 静的void main(String[] args) {
  3. LinkedHashMap<String, Object> マップ = new LinkedHashMap<>(16, 0.75f, true );
  4. map.put( "a" 、1);
  5. map.put( "b" 、2);
  6. map.put( "c" 、3);
  7. System.out.println ( "get の前に " + map) ;
  8. マップ取得します
  9. System.out.println ( "get 後" + map) ;
  10. }}

結果は次のとおりです。

  1. 前に {a=1, b=2, c=3} を取得します
  2. 取得{b=2, c=3, a=1}

accessOrder = true を設定すると、LinkedHashMap をアクセス順にソートできることがわかります。

では、LinkedHashMap はどのようにそれを実現するのでしょうか?

getメソッドを見てみましょう

  1. パブリックV get(オブジェクトキー) {
  2. ノード<K,V> e;
  3. // ノードを取得する
  4. ((e = getNode(hash( key ), key )) == null の場合)
  5. 戻る ヌル;
  6. // accessOrder = trueの場合、afterNodeAccess メソッドを実行します
  7. if (アクセス順序)
  8. afterNodeAccess(e);
  9. e.valueを返します
  10. }

afterNodeAccess メソッドをもう一度見てみると、ノードが移動されていることがわかります。ここまでで、ノードを移動する原理は理解できました。

  1. void afterNodeAccess(Node<K,V> e) { //ノード移動する 最後 
  2. LinkedHashMap.Entry<K,V>最後;
  3. if (accessOrder && ( last = tail ) != e) {
  4. LinkedHashMap.Entry<K,V> p = (LinkedHashMap.Entry<K,V>)e、b = p.before、a = p.after ; p.after = null ; if (b == null )
  5. ヘッド = a;それ以外 
  6. b. after = a; if (a != null )
  7. a.before = b;そうでなければ 
  8. 最後= b;
  9. 最後== null の場合
  10. ヘッド = p;それ以外の場合{
  11. p.before =最後;
  12. 最後. after = p; } 末尾 = p; ++modCount; }}

現在、LinkedHashMap を LRU として使用する場合、容量が限られている場合に古いデータをどのように削除するかという、まだ気になる問題があります。

戻ってputメソッドを見てみましょう

  1. 公開V put(Kキー、V値) {
  2. putVal(hash( key ), key , value, false , true )を返します
  3. }
  4. 最終的な V putVal( intハッシュ、 Kキー、 V 値、 boolean onlyIfAbsent、 boolean evict) {
  5. Node<K,V>[] tab; Node<K,V> p; int n, i;
  6. ((tab = table ) == null || (n = tab.length) == 0)の場合
  7. n = (タブ = resize()).length;
  8. ((p = tab[i = (n - 1) & hash] ) == null の場合
  9. tab[i] = newNode(ハッシュ、キー、値、 null );
  10. それ以外{
  11. ノード<K,V> e; K k;
  12. if (p.hash == ハッシュ &&
  13. ((k = p.key ) == key || ( key != null && key .equals(k))))
  14. e = p;
  15. そうでない場合 (p TreeNode のインスタンス)
  16. e = ((TreeNode<K,V>)p).putTreeVal(this、タブ、ハッシュ、キー、値);
  17. それ以外{
  18. ( int binCount = 0; ; ++binCount) {
  19. ((e = p.next ) == null の場合) {
  20. p.next = newNode(ハッシュ、キー、値、 null );
  21. if (binCount >= TREEIFY_THRESHOLD - 1) // 1番目-1
  22. treeifyBin(タブ、ハッシュ);
  23. 壊す;
  24. }
  25. if (e.hash == hash &&
  26. ((k = e.key ) == key || ( key != null && key .equals(k))))
  27. 壊す;
  28. p = e;
  29. }
  30. }
  31. if (e != null ) { // 既存のマッピング  
  32. V 古い値 = e.value;
  33. if (!onlyIfAbsent || oldValue == null )
  34. e.value = 値;
  35. afterNodeAccess(e);
  36. 古い値を返します
  37. }
  38. }
  39. ++modCount;
  40. if (++サイズ> しきい値)
  41. サイズを変更します。
  42. afterNodeInsertion(削除);
  43. 戻る ヌル;
  44. }
  45. void afterNodeInsertion(boolean evict) { // 最長のものを削除する可能性がある
  46. LinkedHashMap.Entry<K,V>を最初に;
  47. if (evict && ( first = head) != null && removeEldestEntry( first )) {
  48. Kキー=最初の.キー;
  49. ノードを削除します(ハッシュ(キー),キー, null , false , true );
  50. }
  51. }

put メソッドをステップごとに見ていくと、removeEldestEntry(first) メソッドが true を返すとヘッドが削除され、最近使用されていないデータが排除されることがわかります。完全に LRU に準拠しています。

4 最も単純なLRU実装

上記の分析に基づいて、最も単純なLRUを次のように実装できます。

  1. パブリッククラスLRUCache<K,V>はLinkedHashMap<K,V>を拡張します。
  2. プライベートintキャッシュサイズ;
  3. パブリックLRUCache( intキャッシュサイズ){
  4. // 注意: ここでは accessOrder = trueが必要です 
  5. super(キャッシュサイズ、0.75f、 true );
  6. this.cacheSize = キャッシュサイズ;
  7. }
  8. /**
  9. * 要素数がキャッシュ容量を超えているかどうかを判断し、超えている場合は削除します。
  10. */
  11. @オーバーライド
  12. 保護されたブール値の長男エントリを削除します(Map.Entry<K, V> 長男) {
  13. 戻る サイズ() > キャッシュサイズ;
  14. }
  15. }

<<:  米国のAI雇用市場の現在の規模を解読する

>>:  COVID-19パンデミックは不動産業界のインテリジェントな変革とアップグレードを加速させた

ブログ    
ブログ    

推薦する

IDC: アジア太平洋地域のAI支出は大幅に増加、銀行業界がAIに最も投資

IDC の最新の世界人工知能支出ガイドによると、アジア太平洋地域 (日本を除く) の AI システム...

悪いデータは良いAIを殺すことが判明

[[421984]]データ サイエンティストは、データの準備があらゆる AI システムの成功に非常に...

統計と機械学習の違いは何ですか?

[[263249]]ビッグデータダイジェスト制作出典: medium編纂者:周嘉楽、郭小白、蒋宝尚...

1 つの記事で UAV 通信リンク システムを理解する

UAVとは無人航空機の略称で、無線遠隔操縦装置と独自のプログラム制御装置によって操縦される無人航空機...

2018 年のエンタープライズ AI の良い点と悪い点

人工知能の応用はまだ機械学習タスクに限定されていますが、アルゴリズムとハードウェアは徐々に融合してお...

...

Ctrip列車チケットSMSリコールアルゴリズムの最適化の実践

著者についてCtrip アルゴリズムの専門家であるライアンは、パーソナライズされた推奨事項、スマート...

あなたが知らないかもしれないゲームにおける AI に関する 5 つの予測

コンピュータービジョン技術の急速な発展に伴い、機械学習はビデオゲーム業界、特に仮想現実の分野で広く使...

自律飛行ロボットが浙江大学から集団で飛び立ち、サイエンス誌の表紙に登場

最近、浙江省安吉市の竹林で、一群の超小型知能ドローンが集団で派遣され、ジャングルの中を楽々と移動した...

業界の開発者にとって朗報です! Baidu PaddlePaddle のディープラーニング機能が Inspur AI サーバーに導入

8月28日、北京で開催されたAICC 2019人工知能コンピューティングカンファレンスで、Baidu...

中国におけるAI人材の格差はどれほど大きいのか?教育省の学習基準では高校生にAIを学ぶことを義務付けている

[[220662]] 1956 年、ダートマス大学で開催された会議で、コンピューターの専門家であるジ...

...

...

洪水の知らせを聞いたらすぐに行動を起こしましょう!ロボットは風と波の守護者となることを目指す

災害に直面して、すべての関係者が行動を起こした。人民解放軍部隊が被災者の救出に派遣されているとみられ...