2018 年 4 月の最も人気のある AI 機械学習プロジェクト トップ 5

2018 年 4 月の最も人気のある AI 機械学習プロジェクト トップ 5

データサイエンスと機械学習に関しては、GitHub と Reddit が最も人気のある 2 つのプラットフォームです。前者はコードやプロジェクトを共有したり共同作業したりするための優れたツールであり、後者は世界中のデータサイエンス愛好家とコミュニケーションをとるための優れたプラットフォームです。

毎月、GitHub で最も人気のあるデータ サイエンスと機械学習のライブラリをレビューしています。今月リストに載ったライブラリを見てみましょう。

1. 深い絵画的調和

画像を操作して実際の画像のように見せる技術は、古くから存在しています。しかし、ディープラーニングを通じてそれを実現する方が、より効率的で現実的です。開発者たちは、絵画を作成するためのアルゴリズムを考案しました。それは、画像に外部要素を追加して、それを画像と融合させ、元の絵画スタイルとほぼ同じように見せるというものです。

上の画像に示すように、右から 3 番目が最終出力です。最初の 2 つの画像がなければ、バルーンが外部から挿入されたオブジェクトであることを区別できない可能性があります。このアルゴリズムは、写真合成やグローバル スタイル化技術よりも正確な結果を生成し、これまで実現が非常に困難であったレベルの処理を可能にします。 (プロジェクトアドレス: https://github.com/luanfujun/deep-painterly-harmonization)

2. TensorFlow 用の Swift

Swift for TensorFlow は、先月の TensorFlow Developer Summit で初めてデモされました。 Swift for TensorFlow は、TensorFlow の新しいプログラミング モデルを提供し、新しい設計の機会と既存の問題を解決する新しい方法を生み出します。

Swift for TensorFlow は、グラフのパフォーマンス、Eager Execution の柔軟性と表現力を組み合わせ、スタック内の各レイヤーの使いやすさの向上に重点を置いていると報告されています。ただし、このプロジェクトはまだ初期段階であるため、ディープラーニング モデルを作成する準備はまだ整っていません。さらに関連情報を見るにはクリックしてください: 「Python を放棄してもいいですか? Google が TensorFlow 向け Swift をオープンソース化」

3. ムニット

コーネル大学の研究チームは、画像をある領域から別の領域に変換するためのマルチモーダル教師なし画像間変換問題 (MUNIT) フレームワークの標準フレームワークを提案しました。簡単に言えば、画像を取得して、そこから新しい画像を生成します (たとえば、犬の画像を猫の画像に変換する)。

既存の方法では、特定の画像に対して 1 対 1 のマッピングしか実現できないため、1 つの画像に対して複数の異なる出力結果を生成することはできません。 MUNIT のもう 1 つの魅力的な機能は、1 つの画像に対して複数の出力を提供できることです。 (プロジェクトアドレス: https://github.com/NVlabs/MUNIT)

4. グルーオンNLP

GluonNLP は、NLP 分野の最新のディープラーニング モデルの実装を提供し、テキスト データ パイプラインとモデル用のモジュールを確立します。設計面では、エンジニア、研究者、学生が研究アイデアを迅速に実現し、製品のプロトタイプを作成できるように設計されています。

リポジトリには、ライブラリの使用方法の詳細な例が記載された優れたドキュメントがあります。接着剤初心者向けに、60 分間の集中講座も用意されています。 (プロジェクトアドレス: https://github.com/dmlc/gluon-nlp)

5. PyTorch GAN

これは、研究論文で紹介された GAN (Generative Adversarial Networks) の PyTorch 実装のコレクションです。現在、リポジトリには 24 種類の異なる実装がリストされており、それぞれが独自の方法で知識を増やしています。リストには、Adversarial Autoencoders、CycleGAN、Least Squares GAN、Pix2Pix などの実装が含まれています。 (プロジェクトアドレス: https://github.com/eriklindernoren/PyTorch-GAN)

<<:  AIと5Gの登場:モノのインターネットの発展は鈍化しているのか?

>>:  原理から応用まで: ロジスティック回帰アルゴリズムの簡単な説明

ブログ    

推薦する

...

2020年のAIの7つの開発トレンド

[[320187]]追加の AI アプリケーションの需要が高まるにつれて、企業はデータ サイエンス ...

防衛分野で人工知能はどのような役割を果たすのでしょうか?

調査によると、人工知能技術は勢いを増しており、防衛産業にとって極めて重要であることが分かっています。...

自動運転の4つの主要技術の簡単な分析

2017年5月に世界保健機関が発表したデータによると、世界中で毎年約125万人が交通事故で亡くなって...

AIは中国のインターネットを狂ったように汚染している

AIは中国のインターネットを汚染する「犯人」の1つとなった。問題はこれです。最近、誰もが AI に相...

スタンフォード大学: 人工知能に関する 4 年間の学部課程一覧

最近、数年間業界で働いているスタンフォード大学の AI 卒業生が、AI と機械学習のキャリアのために...

GPT ストアは来週開始され、OpenAI アプリケーションの爆発的な増加が目前に迫っています。最も完全なGPTビルダーユーザーガイドはここにあります

これから起こることは、やがて起こるでしょう! OpenAIが開発者会議で正式発表した「GPTストア」...

人工知能技術とアプリケーションを徹底的に分析し、人工知能産業チェーンを効果的に理解します。

近年、モノのインターネット、ビッグデータ、人工知能などのホットなテクノロジーワードが毎日テクノロジー...

人工知能は医師に完全に取って代わることはできない

今後数年間で、初めて医療用人工知能 (AI) システムとやり取りすることになるかもしれません。自動運...

機械学習がインドのヘルスケア分野に変化をもたらす

ヘルスケア産業はインド経済において最大のセクターの一つとなっている。 NITIAyogの報告によると...

ついに、データ、情報、アルゴリズム、統計、確率、データマイニングをわかりやすく説明してくれる人がいました!

[[282346]]データとは何かデータとは何でしょうか? これは私たちがほとんど無視する質問にな...

百度の商用グレードの無人バス「アポロ」が一般公開され、試乗が可能に

百度は第1回デジタルチャイナサミットで、中国の商用グレードの無人バス「アポロ」の試乗を一般公開すると...

携帯電話開発者の年収は153万元、機械学習は最高ではない:IEEEの最新給与レポート

私たちは皆工学を勉強していますが、どの分野を選択すべきでしょうか?給与水準は、人々が将来のキャリアを...

数十億のプロモーショントラフィックでも正確な推奨を行うことは可能でしょうか?コアアルゴリズムの応用実践の解釈

[51CTO.comより引用] Alimamaは、誰もが簡単にマーケティングを行えるようにすることを...

CMU は、日常の家具の操作方法を正確に学習する新しい器用なロボットアルゴリズムを公開しました

日常生活で人々が接触する家具のほとんどは、引き出しレール付きの引き出し、垂直回転軸付きの扉、水平回転...