[51CTO.com クイック翻訳] 機械学習 (ML) は、パターンを識別し、将来の確率を予測するために使用されるデータ分析手法です。これは、人工知能 (AI) 研究の一部です。事前に決められた答えを持つデータを数学モデルに入力することで、コンピューターは将来の未知の入力セットを予測するように自らをトレーニングすることができます。 ML はこれまで特定のタスクの解決には成功してきましたが、より複雑なパラメータを持つデータを分析するには、簡素化された操作で大規模に展開できるモデルが必要です。このタイプの機械学習により、コンピューターははるかに大量の情報から解決策を見つけ、それを自動化できるようになります。これらの理由から、AI と ML は 2020 年までにクラウド コンピューティングの導入を推進する主な触媒になると予想されています。クラウドで利用可能な膨大な量の情報を処理するために、ML は大規模に効率的に学習し、クラウドネイティブ テクノロジー (特にコンテナ化) と統合する必要があります。 この目的のために、Google は最近、Kubernetes 上に構築された、構成可能で移植可能かつスケーラブルな ML スタックである Kubeflow の開発を発表しました。 ML モデルがコンテナーに接続し、オーバーレイではなくデータとコンピューティングを一緒に実行するためのオープンソース プラットフォームを提供します。 Kubeflow は、ML スタックの実装に伴う固有の課題の解決に役立ちます。本番環境レベルの ML ソリューションを構築するには、データをインポート、変換、視覚化し、その後、大規模なモデルの構築、検証、トレーニング、デプロイを行う必要があります。これらのスタックは異なるツールで構築されることが多く、アルゴリズムの管理が複雑になり、一貫性のない結果をもたらします。 Kubeflow 1.0 は、さまざまな ML ツール (特に TensorFlow と JupyterHub) を Kubernetes を使用したマルチクラウド環境間で簡単に転送できるスタックに組み合わせたパッケージを提供します。 テンソルフロー Kubeflow は、オープンソース プログラミング システム TensorFlow を使用して機械学習モデルを構築します。そのソフトウェア ライブラリは、テンソル ジオメトリを使用して、ステートフル データ フロー グラフの形式でデータ間の線形関係を表します。ハードウェア プラットフォームを抽象化して、モデルを CPU (中央処理装置)、GPU (グラフィックス処理装置)、または TPU (テンソル処理装置) 上で実行できるようにします。これらを組み合わせることで、低精度の算術計算の高スループットの基盤が提供されます。この柔軟なアーキテクチャにより、デスクトップ、クラスター、サーバー、モバイル デバイスからエッジ デバイスに至るまで、さまざまなオブジェクトから情報を集約できます。 TensorFlow は使い方が難しく複雑ですが、移植性とスケーラビリティに優れたデータ管理を必要とする高度で複雑な ML モデルの作成に適しています。 ジュピターハブ Kubeflow は、Jupyter ノートブックから直接 TensorFlow 計算グラフを実行します。 Jupyter Notebook はコンテナ対応であり、Kubernetes またはあらゆる種類のオープンソース インフラストラクチャ上で実行できます。インストールやメンテナンスのオーバーヘッドなしで、ML モデルを簡単に実装できる環境とリソースをユーザーに提供します。ドキュメント スタイルの形式では、コードとマークアップ (マークダウン) が同じファイルに埋め込まれ、計算の可視性が提供されます。 JupyterHub を使用すると、エンジニアは TensorFlow グラフをすぐに実行したり、後で使用するために保存したりできるため、TensorFlow モデルの構成をより効率的に制御できます。 Kubeflow は、共同作業とインタラクティブなトレーニングに JupyterHub を活用しています。 Kubeflow のスタックには、TensorFlow モデルの実行を補完する他のソリューションがいくつか含まれています。 Argo はワークフローのスケジューリングに使用され、SeldonCore は複雑な推論と非 TensorFlow Python モデルに使用され、Ambassador はリバース プロキシとして使用されます。このスタックは Kubernetes と統合されており、エンジニアは大規模な ML モデルを効率的に開発、トレーニング、デプロイできます。 クベネフィット Kubernetes は信頼性の高いオープンソースのコンテナ オーケストレーション ツールです。アプリケーション設計をモジュール式で移植可能かつスケーラブルなマイクロサービスに標準化し、複雑なワークロードをさまざまな環境に展開できるようにします。豊富な API を使用して、多くの操作機能を自動化します。 Kubeflow のプラットフォームは Kubernetes を活用して TensorFlow モデルの操作を簡素化し、その実行をクラウドネイティブにします。
クラウドには大量の情報がありますが、そのすべてが機械学習に利用できるわけではありません。 Kubeflow 1.0 は、クラウド内の増え続けるデータ量に ML が対応できることを約束します。 ML をコンテナ オーケストレーション レイヤーに統合し、モデルの操作性、スケーラビリティ、移植性を向上させます。迅速かつ簡単に導入できる、完全なコンテナ化されたスタックを提供します。 Kubeflow 1.0 を使用すると、信頼性が高く包括的なスタックを使用して、コンピューターがはるかに多くのデータセットで自己トレーニングできるようになります。 Kubernetes を理解することは、Kubeflow を使用して ML モデルをシームレスにデプロイするための第一歩です。 原題: 機械学習のコンテナ化: TensorFlow、Kubernetes、Kubeflow、著者: Syed Ahmed [51CTOによる翻訳。パートナーサイトに転載する場合は、元の翻訳者と出典を51CTO.comとして明記してください] |
>>: 工業情報化部の李英査察官:我が国の人工知能の発展は歴史的な好機を迎えている
AI および機械学習モデルの作成に必要なスキルセットをより深く理解するには、機械学習ソフトウェアによ...
序文:約 60,000 時間のビデオから、ある人物の素晴らしい瞬間の 1 分を見つけるにはどうすれば...
テスト自動化における人工知能の使用は、品質保証業界を支配する最新のトレンドの 1 つです。実際、キャ...
上海深水港物流園区を出発し、東シナ海大橋を通り、陽山港ターミナルまで、往復72キロの有名な地元物流環...
[[409282]]この記事では、特に仕事の方法について取り上げます。エンジニアの中には非常に頭の...
[[391934]]スマートグラスの技術は長い間、SF作家たちの想像力をかき立ててきました。理論上、...
人類の科学技術が急速に発展する時代において、人工知能はその精密なアルゴリズムと高効率な作業能力により...
[[199775]]現在、人工知能はますます人気が高まっている分野となっています。普通のプログラマ...
今日は、機械学習の教師なし学習における一般的なクラスタリング手法をいくつか紹介したいと思います。教師...
Meta Platformsの人工知能部門は最近、少量のトレーニングデータのサポートにより、AIモデ...
2016 年に私たちは、ボット パラダイムの変化は、過去 10 年間の Web からモバイル アプリ...
[[189044]]昨年、自動運転車がニュージャージー州モンマス郡に侵入した。チップメーカーのNvi...
AI はあらゆるところに存在し、その可能性は計り知れません。しかし、諺にあるように、大いなる力には大...