機械学習のコンテナ化: TensorFlow、Kubernetes、Kubeflow

機械学習のコンテナ化: TensorFlow、Kubernetes、Kubeflow

[[253678]]

[51CTO.com クイック翻訳] 機械学習 (ML) は、パターンを識別し、将来の確率を予測するために使用されるデータ分析手法です。これは、人工知能 (AI) 研究の一部です。事前に決められた答えを持つデータを数学モデルに入力することで、コンピューターは将来の未知の入力セットを予測するように自らをトレーニングすることができます。

ML はこれまで特定のタスクの解決には成功してきましたが、より複雑なパラメータを持つデータを分析するには、簡素化された操作で大規模に展開できるモデルが必要です。このタイプの機械学習により、コンピューターははるかに大量の情報から解決策を見つけ、それを自動化できるようになります。これらの理由から、AI と ML は 2020 年までにクラウド コンピューティングの導入を推進する主な触媒になると予想されています。クラウドで利用可能な膨大な量の情報を処理するために、ML は大規模に効率的に学習し、クラウドネイティブ テクノロジー (特にコンテナ化) と統合する必要があります。

この目的のために、Google は最近、Kubernetes 上に構築された、構成可能で移植可能かつスケーラブルな ML スタックである Kubeflow の開発を発表しました。 ML モデルがコンテナーに接続し、オーバーレイではなくデータとコンピューティングを一緒に実行するためのオープンソース プラットフォームを提供します。

Kubeflow は、ML スタックの実装に伴う固有の課題の解決に役立ちます。本番環境レベルの ML ソリューションを構築するには、データをインポート、変換、視覚化し、その後、大規模なモデルの構築、検証、トレーニング、デプロイを行う必要があります。これらのスタックは異なるツールで構築されることが多く、アルゴリズムの管理が複雑になり、一貫性のない結果をもたらします。 Kubeflow 1.0 は、さまざまな ML ツール (特に TensorFlow と JupyterHub) を Kubernetes を使用したマルチクラウド環境間で簡単に転送できるスタックに組み合わせたパッケージを提供します。

テンソルフロー

Kubeflow は、オープンソース プログラミング システム TensorFlow を使用して機械学習モデルを構築します。そのソフトウェア ライブラリは、テンソル ジオメトリを使用して、ステートフル データ フロー グラフの形式でデータ間の線形関係を表します。ハードウェア プラットフォームを抽象化して、モデルを CPU (中央処理装置)、GPU (グラフィックス処理装置)、または TPU (テンソル処理装置) 上で実行できるようにします。これらを組み合わせることで、低精度の算術計算の高スループットの基盤が提供されます。この柔軟なアーキテクチャにより、デスクトップ、クラスター、サーバー、モバイル デバイスからエッジ デバイスに至るまで、さまざまなオブジェクトから情報を集約できます。

TensorFlow は使い方が難しく複雑ですが、移植性とスケーラビリティに優れたデータ管理を必要とする高度で複雑な ML モデルの作成に適しています。

ジュピターハブ

Kubeflow は、Jupyter ノートブックから直接 TensorFlow 計算グラフを実行します。 Jupyter Notebook はコンテナ対応であり、Kubernetes またはあらゆる種類のオープンソース インフラストラクチャ上で実行できます。インストールやメンテナンスのオーバーヘッドなしで、ML モデルを簡単に実装できる環境とリソースをユーザーに提供します。ドキュメント スタイルの形式では、コードとマークアップ (マークダウン) が同じファイルに埋め込まれ、計算の可視性が提供されます。 JupyterHub を使用すると、エンジニアは TensorFlow グラフをすぐに実行したり、後で使用するために保存したりできるため、TensorFlow モデルの構成をより効率的に制御できます。 Kubeflow は、共同作業とインタラクティブなトレーニングに JupyterHub を活用しています。

Kubeflow のスタックには、TensorFlow モデルの実行を補完する他のソリューションがいくつか含まれています。 Argo はワークフローのスケジューリングに使用され、SeldonCore は複雑な推論と非 TensorFlow Python モデルに使用され、Ambassador はリバース プロキシとして使用されます。このスタックは Kubernetes と統合されており、エンジニアは大規模な ML モデルを効率的に開発、トレーニング、デプロイできます。

クベネフィット

Kubernetes は信頼性の高いオープンソースのコンテナ オーケストレーション ツールです。アプリケーション設計をモジュール式で移植可能かつスケーラブルなマイクロサービスに標準化し、複雑なワークロードをさまざまな環境に展開できるようにします。豊富な API を使用して、多くの操作機能を自動化します。 Kubeflow のプラットフォームは Kubernetes を活用して TensorFlow モデルの操作を簡素化し、その実行をクラウドネイティブにします。

  • 移植性とスケーラビリティ: Kubernetes を使用すると、TensorFlow モデルをマイクロサービスとしてモジュール方式で管理できるため、移植性とスケーラビリティが向上します。さまざまな環境、プラットフォーム、クラウド プロバイダー間で簡単に移動できます。従来、ML スタックは移植可能ではなく、モデルとそれに関連する依存関係をラップトップからクラウド クラスターに移行するプロセスでは、再設計に関して多大な作業が必要になります。 Kubeflow を使用すると、これらのアルゴリズムは実行と同じ速さでデータにアクセスできます。
  • 自動化と操作の容易さ: Kubernetes は、マイクロサービスを管理するための宣言型 API の豊富なライブラリを提供し、アプリケーションがエンドツーエンドの自動化を採用するのに役立ちます。 Kubernetes は、従来は時間のかかるリソース管理、ジョブの割り当て、その他の運用上の懸念事項を処理します。 Kubeflow を使用すると、エンジニアは運用の管理ではなく ML アルゴリズムの作成に集中できます。

クラウドには大量の情報がありますが、そのすべてが機械学習に利用できるわけではありません。 Kubeflow 1.0 は、クラウド内の増え続けるデータ量に ML が対応できることを約束します。 ML をコンテナ オーケストレーション レイヤーに統合し、モデルの操作性、スケーラビリティ、移植性を向上させます。迅速かつ簡単に導入できる、完全なコンテナ化されたスタックを提供します。 Kubeflow 1.0 を使用すると、信頼性が高く包括的なスタックを使用して、コンピューターがはるかに多くのデータセットで自己トレーニングできるようになります。 Kubernetes を理解することは、Kubeflow を使用して ML モデルをシームレスにデプロイするための第一歩です。

原題: 機械学習のコンテナ化: TensorFlow、Kubernetes、Kubeflow、著者: Syed Ahmed

[51CTOによる翻訳。パートナーサイトに転載する場合は、元の翻訳者と出典を51CTO.comとして明記してください]

<<:  人工知能を活用した新しい小売無人店舗の発展展望は?

>>:  工業情報化部の李英査察官:我が国の人工知能の発展は歴史的な好機を迎えている

ブログ    

推薦する

...

フードデリバリー広告向け大規模ディープラーニングモデルのエンジニアリング実践

著者: Yajie Yingliang、Chen Long 他導入美団のフードデリバリー事業が成長を...

百度と東軟教育が共同で「東軟百度人工知能アカデミー」を設立し、AIの「人材不足」を打破

インテリジェント時代が加速しており、人工知能の人材はAIの発展を支える第一のリソースとして特に重要で...

...

ロボットと人工知能の違いは何でしょうか?

テクノロジーの世界では、「ロボット工学」と「人工知能(AI)」という 2 つの用語がしばしば結び付け...

デジタル変革の本質、道筋、段階、課題を1つの記事で解説

01エンタープライズデジタルトランスフォーメーションの本質デジタル化により、人間が暮らす現実世界と仮...

会話型 AI は FMCG 業界でどのように導入されていますか?

今日、ますます多くの消費財 (CPG) 企業が、日用消費財 (FMCG) 事業に AI テクノロジー...

看護師の負担を軽減し、病院の効率化を実現します!医療物流ロボットが「新たな人気」に

[[399194]]ロボット産業は、我が国のインテリジェント製造業の発展における重要なリンクであり、...

機械学習がデータセンター管理をどう変えるか

機械学習はデータセンターの経済性を劇的に変え、将来のパフォーマンス向上への道を開きます。機械学習と人...

国防総省が新たなAIを開発: 海、陸、空のデータをリアルタイムで分析し「未来を予測」

[[415593]] 8月5日、外国メディアの報道によると、米軍は世界中のセンサーデータをタイムリ...

人工知能向け開発言語5つを比較するとどれが優れているのか?

我が国の人工知能は近年急速に発展しており、顔認識や医療など多くの分野で優れた成果を上げています。しか...

検討すべき5つのスマートホームテクノロジー

今日でも、ほとんどの人はスマートホームテクノロジーを手の届かない贅沢品と見なしています。しかし、家庭...

アナーキストとの対話: ノーム・チョムスキーが語るディープラーニングの未来

この記事は公開アカウント「Reading Core Technique」(ID: AI_Discov...

梅の花の山の上を歩くロボット犬?自転車は自分でバランスをとることができますか?テンセント・ロボティクスXラボ研究初の「開封」

テンセントは11月20日、移動ロボット研究における新たな進展を発表し、四足移動ロボット「ジャモカ」と...

2021年の中国の人工知能市場の現状と応用動向の分析人工知能は業界規模を5000億に押し上げ、幅広い応用産業を持っています

人工知能業界の主要上場企業:現在、国内の人工知能業界の上場企業は主に百度(BAIDU)、テンセント(...