[51CTO.com クイック翻訳] データから学習し、パターンを識別し、人間の介入を最小限に抑えて意思決定を行うことができるシステムは魅力的です。ニューラル ネットワークを使用する機械学習の一種であるディープラーニングは、オブジェクト分類からレコメンデーション システムまで、さまざまなコンピューティング問題を解決するための効果的なツールとして急速に普及しつつあります。ただし、トレーニング済みのニューラル ネットワークをアプリケーションやサービスに導入することは、インフラストラクチャ管理者にとって課題となる可能性があります。複数のフレームワーク、十分に活用されていないインフラストラクチャ、標準的な実装の欠如などの課題は、AI プロジェクトの失敗につながる可能性もあります。この記事では、これらの課題に対処し、データセンターまたはクラウドの運用環境にディープラーニング モデルを展開する方法について説明します。 一般的に、私たちアプリケーション開発者は、データ サイエンティストや IT 部門と協力して、AI モデルを本番環境に展開します。データ サイエンティストは、特定のフレームワークを使用して、さまざまなユース ケース向けに機械学習/ディープラーニング モデルをトレーニングします。トレーニング済みのモデルを、ビジネス上の問題を解決するために開発されたアプリケーションに統合します。 IT 運用チームは、データ センターまたはクラウドで展開されたアプリケーションを実行および管理します。 図1. ディープラーニング モデルを本番環境に導入する場合、大きな課題が 2 つあります。
では、何ができるでしょうか? NVIDIA の TensorRT 推論サーバーなどのアプリケーションを使用して、これらの課題に対処する方法を見てみましょう。 TensorRT Inference Server は、NVIDIA NGC リポジトリ (https://ngc.nvidia.com/catalog/containers/nvidia:tensorrtserver) からコンテナーとしてダウンロードすることも、GitHub (https://github.com/NVIDIA/tensorrt-inference-server) からオープン ソース コードとしてダウンロードすることもできます。 TensorRT 推論サーバー: 導入が簡単になります TensorRT 推論サーバーは、次の機能の組み合わせにより、トレーニング済みのニューラル ネットワークの展開を簡素化します。
図2
アプリケーションを開発する際には、リアルタイムの要件を理解する必要があります。 TensorRT 推論サーバーには、リアルタイム アプリケーションのレイテンシしきい値を設定するためのパラメーターがあり、バッチ処理を実装するためにゼロ以外の数値に設定できる動的バッチ処理もサポートしています。当社は、IT 運用チームと緊密に連携して、これらのパラメータが正しく設定されていることを確認します。
CPU 推論から GPU 推論に移行する方法を見てみましょう。
モデル構成ファイルを設定し、クライアント ライブラリを統合すると、TensorRT 推論サーバーをアプリケーション コードに簡単に統合できます。 トレーニング済みのニューラル ネットワークを展開するのは難しい場合がありますが、この記事ではそれを簡単にするいくつかの手法について説明します。コミュニケーションのためにメッセージを残していただければ幸いです。 原題: ディープラーニング モデルを本番環境に簡単に導入、著者: Shankar Chandrasekaran [51CTOによる翻訳。パートナーサイトに転載する場合は、元の翻訳者と出典を51CTO.comとして明記してください] |
<<: MIT の新しい研究: ゼロから設計? AIにより誰もが服をデザインできるようになる
>>: サービスロボットは驚異的なユニコーンを生み出すことができるか?
この記事は、公開アカウント「Reading the Core」(ID: AI_Discovery)か...
[[320187]]追加の AI アプリケーションの需要が高まるにつれて、企業はデータ サイエンス ...
AIを生物多様性保全に活用することで、植物や動物の絶滅を防ぎ、安定した生態系を維持することができます...
01 自動運転とは自動運転は無人運転とも呼ばれ、その名の通り、車両が人間の操作なしに周囲の環境を認...
[[326634]]最近、「アマゾンAI李牧のチームから大量の人材が抜けたことについてどう思います...
近年、テキスト生成画像、特に詳細レベルでリアルな効果を示す拡散ベースの画像生成モデルの分野で大きな進...
チューリッヒ大学の研究者らは、複雑で未知の環境でもドローンが高速で自律飛行できるようにする新たな人工...
2023年12月、初のオープンソースMoE大規模モデルMixtral 8×7Bがリリースされました。...
人工知能は、ビジネスから工業デザイン、エンターテインメントまで、さまざまな分野で新たな機会を提供して...
企業の人工知能予算は急速に増加しているが、導入には依然として大きな課題が残っていることが、Algor...
2016年3月にアルファ碁が囲碁の世界チャンピオン、イ・セドルを破って以来、人工知能は大きな注目を集...