コンピュータビジョンプロジェクト: 10 個の高品質オープンソースデータセットがリリースされました

コンピュータビジョンプロジェクト: 10 個の高品質オープンソースデータセットがリリースされました

コンピューター ビジョンは、ほぼすべての産業分野で進歩を加速させています。 コンピューター ビジョン テクノロジーの助けを借りて、組織は機械のこれまでの動作方法に革命を起こしています。 コンピュータービジョンは現在、ヘルスケアや自動運転などの分野で世界中で大規模なテクノロジーに活用されています。コンピューター ビジョン用の強力なディープラーニング モデルを構築するには、トレーニング フェーズで高品質のデータセットを適用する必要があります。

この記事では、コンピューター ビジョン プロジェクトに使用できる 10 個の高品質データセットを紹介します。

1 | CIFAR-10

CIFAR-10 は、Alex Krizhevsky、Vinod Nair、Geoffrey Hinton によって収集された人気のコンピューター ビジョン データセットです。 このデータセットはオブジェクト認識用で、10 のカテゴリに分かれた 60,000 枚の 32×32 カラー画像 (カテゴリごとに 6,000 枚の画像) で構成されています。 これは 5 つのトレーニング バッチと 1 つのテスト バッチに分かれており、各バッチには 10,000 枚の画像が含まれます。つまり、トレーニング画像が 50,000 枚、テスト画像が 10,000 枚あることになります。

2 | 都市の風景

Cityscapes は、Computer Vision プロジェクトのオープンソースの大規模データセットで、50 の異なる都市の街路風景で記録されたさまざまなステレオ ビデオ シーケンスが含まれています。これには、5,000 フレームの高品質なピクセルレベルの注釈と、20,000 の弱い注釈付きフレームのより大きなセットが含まれています。 このデータセットは主に、ディープ ニューラル ネットワークをトレーニングし、都市のシーンの意味的理解という主なタスクにおけるビジョン アルゴリズムのパフォーマンスを評価するために使用されます。

ファッションMNIST

Fashion-MNIST は、60,000 個のサンプルのトレーニング セットと 10,000 個のサンプルのテスト セットを含む、コンピューター ビジョン用の画像データセットです。 このデータセットでは、各例は 10 クラスのラベルに関連付けられた 28×28 のグレースケール画像です。 さまざまなパラメータを持つ 129 個の分類器をカバーする、Scikit-learn に基づく自動ベンチマーク システムがあります。

イメージネット

ImageNet は、コンピューター ビジョン プロジェクトで最も人気のあるデータセットの 1 つであり、WordNet 階層に従って整理された画像のアクセス可能なデータベースを提供します。 WordNet には 100,000 を超える synset があり、ImageNet は WordNet の各 synset を説明するために平均 1,000 枚の画像を提供しています。 WordNet 階層のほとんどの概念について、数千万のきれいに分類された画像を提供します。

5| IMDB-Wiki データセット

IMDB-Wiki データセットは、性別と年齢のラベルでトレーニングされた最大規模のオープン顔画像データセットの 1 つです。このデータセットには合計 523,051 枚の顔画像が含まれており、そのうち 460,723 枚の顔画像は IMDB の 20,284 人の著名人と Wikipedia の 62,328 人の著名人から取得されました。

6 | キネティクス-700

Kinetics-700 は、さまざまな人間中心のアクションを含む YouTube 動画 URL の大規模で高品質なデータセットです。 このデータセットには、700 の人間の動作クラスをカバーする約 650,000 のビデオ クリップが含まれており、各動作クラスには少なくとも 600 のビデオ クリップが含まれています。 ここでは、各クリップは約 10 秒間続き、カテゴリでラベル付けされています。

7 | MSココ

COCO または Common Objects in COntext は、大規模なオブジェクト検出、セグメンテーション、キャプション作成データセットです。 このデータセットには、簡単に識別できる 91 種類のオブジェクトの写真が含まれており、328,000 枚の画像に合計 250 万のラベル付きインスタンスがあります。

8| MPII 人間のポーズデータセット

MPII Human Pose データセットは、関節のある人間のポーズの推定を評価するために使用されます。 このデータセットには、体の関節が注釈付けされた 40,000 人以上の人物の画像約 25,000 枚が含まれています。 ここでは、各画像は YouTube ビデオから抽出され、前のラベルなしフレームの注釈付きバージョンが添付されています。 全体として、データセットは 410 の人間の活動をカバーしており、各画像には活動のラベルが付けられています。

9| 画像を開く

この Open Images データセットは、オブジェクトの位置注釈が付いた既存のデータセットの中で最大規模のものの 1 つです。 これは、画像レベルのラベル、オブジェクトの境界ボックス、オブジェクトのセグメンテーション マスク、および視覚的な関係を含む約 900 万枚の画像で構成されています。 このデータセットには、190 万枚の画像上の 600 個のオブジェクト カテゴリに対する 1,600 万個の境界ボックスが含まれています。

10| 200億何かデータセット V2

20BN-Something-Something データセットは、日常の物体に対して人間が事前に定義された基本的な動作を実行している様子を示す、高密度にラベル付けされたビデオ クリップの大規模なコレクションです。 これは大規模なクラウドワーカーによって作成され、ML モデルが物理世界で発生する基本的なアクションをより詳細に理解できるようにします。 ビデオの総数は 220,847 で、そのうち 168,913 がトレーニング セット、24,777 が検証セット、27,157 がテスト セットです。

Model Playは、世界中の開発者向けのAIモデルリソースプラットフォームです。多様なAIモデルを内蔵し、Titanium AIX(コンピュータービジョンとインテリジェント音声インタラクションの2つのコア機能を統合した人工知能ハードウェア)と組み合わせ、Googleのオープンソースニューラルネットワークアーキテクチャとアルゴリズムに基づいて自律的な転移学習機能を構築します。コードを書く必要はありません。画像を選択し、モデルとカテゴリ名を定義するだけで、AIモデルのトレーニングが完了します。

<<:  2019年に「AI+教育」分野で大手企業は何をしたのでしょうか?

>>:  2020 年の AI チャットボット技術予測

ブログ    
ブログ    
ブログ    

推薦する

人工知能はまだ長い道のりを歩んでいる

過去2年間で、「スマートホーム」はほぼすべての家電メーカーが必ず話題にし、自社製品になくてはならない...

コンテキスト化によって生成型AIの可能性を解き放つ方法

生成型人工知能 (GenAI) が驚異的なスピードで進歩するにつれ、その真の価値を活用したい企業にと...

ChatGPTがまた進化しました!オールインワンツール、ネットユーザー:今日、起業プロジェクトがいくつ消滅したか

ChatGPT は一晩で静かにアップデートされ、数多くの起業家プロジェクトが始動しようとしています。...

...

70%は輸入品。中国の産業用ロボットはチップのような悲劇をどう回避できるのか?

ロボットは産業の魂です。 [[386663]]しかし、私たちの身近な国である日本が、20年もの間、世...

ChatGPTプロンプトワードの新しいゲームプレイ「もっと作る」、テキストと画像の効果を2倍にする

ChatGPT は誰もがよく知っていると思いますが、それをうまく使う方法は想像するほど簡単ではありま...

大量データストリームのベストプラクティス

概要: 膨大な量のデータを効率的に分析するために、科学者はまず大量の数字を細分化する必要があります。...

...

私たち全員が失業するかもしれない:今後10年間でほぼすべての仕事が変化する

[[248203]]バイオテクノロジーの進歩により、人間の寿命は今後も延び続け、社会の家族構成、結婚...

AIはワールドカップ賭博の「必殺武器」となるが、その精度は「イカ・リュー」ほど高くない

[[234677]]画像出典: Visual China韓国がドイツを2対0で破った後、私の別のグル...

ロボットは電気羊の夢を見るか?Google AI 従業員の辞職から AI 倫理について何を学ぶことができるか?

2月20日、Googleの倫理AIチームの創設者であるミッチェル氏はTwitterに「私は解雇され...

ユーモアを理解し、皮肉のスキルに溢れた、マスクのChatGPTのライバルがついにチャットのスクリーンショットを公開

最近、マスク氏の伝記「イーロン・マスク:伝記」が国内外でベストセラーとなった。この本には、マスク氏の...

過大評価された5つのテクノロジー:誇大宣伝の裏にある現実を探る

すべてのテクノロジーが期待通りの成果を上げたり、当初の約束を果たしたりするわけではありません。技術進...

...

...