量子機械学習モデルを構築するための Google の新しいフレームワーク、TensorFlow Quantum を探索する

量子機械学習モデルを構築するための Google の新しいフレームワーク、TensorFlow Quantum を探索する

[[319936]]

[51CTO.com クイック翻訳] 量子コンピューティングと人工知能 (AI) の交差点は、技術開発の歴史全体の中で最も魅力的なトレンドの 1 つになると予想されています。量子コンピューティングの出現により、既存のコンピューティングパラダイムのほぼすべてを再考する必要が生じる可能性があり、AI も例外ではありません。しかし、量子コンピュータの計算能力は、今日ではまだ実用的ではない AI の多くの側面を高速化することも期待されています。 AI と量子コンピューティングを融合するための第一歩は、量子アーキテクチャ上で実行できるように機械学習モデルを再考することです。最近、Google は量子機械学習モデルを構築するためのフレームワーク TensorFlow Quantum をオープンソース化しました。

TensorFlow Quantum の中心的なコンセプトは、TensorFlow プログラミング モデルで量子アルゴリズムと機械学習プログラムを織り交ぜることです。 Google はこのアプローチを量子機械学習と呼んでおり、Google Cirq などの最近の量子コンピューティング フレームワークを使用してこれを実装することができます。

量子機械学習

量子コンピューティングと AI に関して言えば、私たちが答えなければならない最初の質問は、AI が新しい量子アーキテクチャからどのように恩恵を受けることができるかということです。量子機械学習 (QML) は、量子特性を最大限に活用できる機械学習モデルの総称です。 QML の最初のアプリケーションは、従来の機械学習モデルをリファクタリングして、量子ビットの数に応じて劇的に拡張される状態空間で高速な線形代数を実行できるようにすることに重点が置かれています。しかし、量子ハードウェアの発展により、量子ハードウェアの計算能力が向上したため、QML の展望は広がり、徐々に経験的に研究できるヒューリスティックな方法へと発展してきました。このプロセスは、GPU の登場により機械学習がディープラーニング パラダイムへと進化するようになった方法に似ています。

TensorFlow Quantum のコンテキストでは、QML は次の 2 つの部分として定義できます。

a. 量子データセット

b. ハイブリッド量子モデル

量子データセット

量子データとは、自然または人工の量子システムで発生するデータのソースです。これは量子力学の実験からの古典的なデータである場合もあれば、量子デバイスによって直接生成され、アルゴリズムに入力として送られるデータである場合もあります。以下に説明する理由により、「量子データ」に対するハイブリッド量子-古典機械学習アプリケーションは、純粋な古典機械学習よりも量子的な利点を提供できるという証拠がいくつかあります。量子データは重ね合わせやエンタングルメントの現象を示し、その結果、結合確率分布が生じ、それを表現または保存するには指数関数的に膨大な量の従来のコンピューティング リソースが必要になる場合があります。

ハイブリッド量子モデル

機械学習がトレーニング データセットからモデルを一般化できるのと同様に、QML は量子データセットから量子モデルを一般化できます。しかし、量子プロセッサはまだ小さくノイズが多いため、量子モデルは量子プロセッサのみを使用して量子データを一般化することはできません。ハイブリッド量子モデルは、量子コンピュータが古典コンピュータと共生し、ハードウェア アクセラレータとして最も有用となるシナリオを提案します。このモデルは、CPU、GPU、TPU にわたる異種コンピューティングをすでにサポートしているため、TensorFlow に適しています。

サーク

ハイブリッド量子モデルを構築するための最初のステップは、量子演算を活用できるようにすることです。これを実現するために、TensorFlow Quantum は、近い将来に実現されるデバイス上で量子回路を呼び出すためのオープンソース フレームワークである Cirq に依存しています。 Cirq には、量子ビット、ゲート、回路、測定演算子など、量子計算を指定するために必要な基本構造が含まれています。 Cirq の背後にあるアイデアは、量子アプリケーション ソフトウェアの基本的な構成要素を抽象化するシンプルなプログラミング モデルを提供することです。最新バージョンには、次の主要な構成要素が含まれています。

  • 回路: Cirq では、回路は量子回路の最も基本的な形式を表します。 Cirq 回路は、ある抽象的な時間間隔中に量子ビットに対して実行される操作で構成されるモーメントの集合として表されます。
  • スケジュールとデバイス: スケジュールは、ゲートのタイミングと期間に関するより詳細な情報を含む量子回路の別の形式です。概念的には、スケジュールは ScheduledOperations のセットと、スケジュールが実行される機器の説明で構成されます。
  • ゲート: Cirq では、ゲートは量子ビットのコレクションに対する操作を抽象化します。
  • シミュレーター: Cirq には、回路とスケジュールを実行するために使用できる Python シミュレーターが含まれています。シミュレータ アーキテクチャは複数のスレッドと CPU にわたって拡張できるため、かなり複雑な回路を実行できます。

TensorFlow 量子

TensorFlow Quantum (TFQ) は、QML アプリケーションを構築するためのフレームワークです。 TFQ を使用すると、機械学習の研究者は、量子データセット、量子モデル、および古典的な制御パラメータを単一の計算グラフ内のテンソルとして構築できます。

アーキテクチャの観点から見ると、TFQ は TensorFlow、Cirq、計算ハードウェアとの相互作用を抽象化するモデルを提供します。スタックの最上部は処理されるデータです。古典データは TensorFlow によって直接処理されます。TFQ は、量子回路と量子演算子で構成される量子データを処理する機能を追加します。スタックの次のレベルは、TensorFlow の Keras API です。 TFQ の中心的な理念は、コア TensorFlow (特に Keras モデルおよびオプティマイザー) とのネイティブ統合であるため、このレベルはスタックの全幅にわたります。 Keras モデルの抽象化の下には量子レイヤーと微分器があり、これを従来の TensorFlow レイヤーと接続すると、量子と古典のハイブリッド自動微分化が可能になります。量子層と微分化器の下で、TFQ はデータフロー グラフのインスタンスを作成する TensorFlow 演算子に依存します。

実行の観点から見ると、TFQ は次の手順に従って QML モデルをトレーニングおよび構築します。

1. 量子データセットを準備する: 量子データは、Cirq で記述された量子回路として指定されたテンソルとして読み込まれます。テンソルは TensorFlow によって量子コンピュータ上で実行され、量子データセットを生成します。

2. 量子ニューラル ネットワーク モデルを評価する: このステップでは、研究者は Cirq を使用して量子ニューラル ネットワークのプロトタイプを作成し、それを TensorFlow 計算グラフに埋め込むことができます。

3. サンプリングまたは平均化: このステップでは、ステップ 1 と 2 を含む複数の実行を平均化する方法を利用します。

4. 古典的なニューラル ネットワーク モデルを評価する: この手順では、古典的なディープ ニューラル ネットワークを使用して、前の手順で抽出されたメトリック間の相関関係を取得します。

5. コスト関数を評価する: 従来の機械学習モデルと同様に、TFQ はこのステップを使用してコスト関数を評価します。これは、量子データがラベル付けされている場合はモデルが分類タスクをどれだけ正確に実行するかに基づく可能性があり、タスクが監督されていない場合は他の基準に基づく可能性があります。

6. 勾配を評価してパラメータを更新する: コスト関数を評価した後、パイプライン内の自由パラメータは、コストを削減すると予想される方向に更新する必要があります。

TensorFlow と Cirq を組み合わせることで、TFQ はよりシンプルで使い慣れたプログラミング モデルや、多数の量子回路を同時にトレーニングして実行する機能など、豊富な機能セットを備えることができます。

量子コンピューティングと機械学習を組み合わせた取り組みはまだ初期段階にあります。もちろん、TFQ は量子学習と機械学習における最高の IP の一部を活用した、この分野における最も重要なマイルストーンの 1 つです。 TFQ の詳細については、プロジェクトの Web サイト (https://www.tensorflow.org/quantum) をご覧ください。

原題: 量子機械学習モデルを作成するための Google の新しいフレームワーク、TensorFlow Quantum の探索、著者: Jesus Rodriguez

[51CTOによる翻訳。パートナーサイトに転載する場合は、元の翻訳者と出典を51CTO.comとして明記してください]

<<:  シンプルな人工ニューラル ネットワークをゼロから構築する: 1 つの隠れ層

>>:  IoTドローンが都市を消毒する方法

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

...

人間のフィードバックなしで調整します。田元東チームの新しい研究RLCD:無害で有益なアウトラインライティングはベースラインモデルを全面的に上回る

大規模モデルがより強力になるにつれて、低コストでモデルの出力を人間の嗜好や社会の公共価値により沿った...

機械学習の研究を再現するのは非常に難しい

[[223551]]はじめに:再現性と一貫性は計算科学研究の基本要件であり、機械学習も例外ではありま...

Meta AI が Omnivore をリリース: 画像、動画、3D データの分類タスクを処理できるモデル

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

...

AIを新たな段階へ導くYLearn因果学習オープンソースプロジェクトがリリース

2022年7月12日、九張雲済DataCanvas社は、もう一つの画期的なオープンソース技術成果であ...

...

負荷分散アルゴリズムのQ&A集

前に学んだように、負荷分散アルゴリズムがこの技術の核心です。アルゴリズムの仕様がなければ、この技術は...

トランプ大統領、米国の製造業の発展にロボット活用を視野に

トランプ大統領は米国の製造業がかつての栄光を取り戻すことを望んでいる。彼はロボットに狙いを定め、米国...

ディープラーニングの台頭から10年:OpenAIのイノベーターたち

AlexNet、AlphaGo、GPT、CLIP、DALL-E、Codex、これらはAIの世界でセン...

ゲームAIの課題が進み、リアルタイム戦略ゲームや不完全情報ゲームがホットスポットに

前回の 2 つの記事では、ゲーム AI の歴史におけるいくつかの古典的なアルゴリズムと画期的なイベン...

ホーキング博士:人工知能の台頭は人類文明の終焉をもたらす可能性がある

4月27日、北京国家会議センターで2017年グローバルモバイルインターネットカンファレンス(GMIC...

モザイクがワンクリックでHDになる?魔法のAI「ロスレス拡大」ツール

写真を鮮明に見るにはどうすればいいですか?サムネイルを何度も拡大すると、モザイクしか見えなくなる場合...

量子コンピュータ、数学オリンピックのための AI... これらは 2020 年のコンピュータと数学における大きな進歩です

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

...