人工知能 VS 人間: 私たちは本当にいつも負け続けるのでしょうか?

人工知能 VS 人間: 私たちは本当にいつも負け続けるのでしょうか?

ディープ・ブルー・コンピュータシステムがチェスチャンピオンのガルリ・カスパロフを華々しく破ってから20年後、Googleは世界最高の囲碁プレイヤーに勝利した人工知能システムを開発した。人工知能は急速に発展しており、世界最高のスーパープレイヤーを打ち負かすための道でさらに重要な一歩を踏み出しています。

[[184606]]

Quartzによると、MITの学生Vlad Firoiu氏が開発したAIゲームが、世界最高のプレイヤーの何人かに勝利したという。 AIゲームは最高のプレイヤーと対戦しなかったが、負けたプレイヤーの1人は「誰も勝てないと思う」と認めた。

この成果は素晴らしいものですが、AI があらゆるゲームで人間に勝てるようになるまでには、まだいくつかの改良が必要です。人工知能は、人間よりも多くのゲームの動きを記憶するなど、ゲームに勝つための新しい方法を学習しています。彼らは戦略的に考える方法と互いに協力し合う方法を学んでいます。これは人間と競争する AI の良いパフォーマンスであり、AI は間違いなくさらに進歩するでしょう。

新しい環境と新しい発展

大乱闘スマッシュブラザーズは、マリオやピカチュウなどの有名な任天堂のキャラクターが互いに戦うことができる、2001年に開発された任天堂のゲームです。このゲームは非常に古く、続編が 2 つありますが、今でも多くのプレイヤーに好まれています。 「大乱闘スマッシュブラザーズ」のプレイヤーは新たな戦闘テクニックを開発し続けており、ゲームの人気は維持されています。

スマッシュは格闘ゲームなので、AI はチェスとは異なる課題に直面します。チェスでは、AI は数百万の動きを記憶するだけで人間のプレイヤーを上回ることができます。しかし、近日発売予定のゲーム「スマッシュ」では、AI は人間のプレイヤーがどのような戦闘動作を行うかを確実に予測できないため、未来を予測することができません。人間のプレイヤーに勝つためには、AI は Smash のプレイ方法を「学習」する必要があります。

フィロイウ氏とその同僚が AI に教えたのはまさにそれだ。彼らは敵の位置を正確に判断し、戦闘指示を出すことができるニューラルネットワークを開発した。ニューラル ネットワークは AI を近接戦闘で訓練し、AI が自分自身を攻撃できるようにします。 AIは自分自身と対戦することで、わずか数週間で優れたスマッシュプレイヤーに勝つ方法を学習しました。

スマッシュに加えて、先月、人工知能はニューラルネットワークを使用して、世界最高のポーカープレイヤーに勝利しました。スマッシュと同じように、ポーカーも計算だけで勝つことはできません。プレイヤーのカードプレイの習慣、特にブラフの能力を理解することが求められます。そして、Smash AI と同様に、ポーカー プレイヤーはトーナメントに参加する前に、対戦相手と対戦するのではなく自分自身と対戦することでスキルを磨きます。ポーカープレイヤーはこの方法で何兆ものゲームに勝利してきました。ポーカーやビデオゲームでのこれらの勝利は、人工知能の急速な進歩を表しています。

しかし、私たちは満足してはいけません。これらの勝利にもかかわらず、AI の開発にはまだまだ長い道のりが残っています。 AI の反応速度は人間よりもはるかに速いため、Smash AI は人間のプレイヤーよりも攻撃的であり、攻撃を時間内に回避できます。しかし、AI はゲーム内の飛び道具を扱うことができないため、遠距離攻撃のキャラクターと戦うことができず、相手が隅に隠れると途方に暮れて崖から飛び降りて自殺することもあります。

そのため、スマッシュ AI は本当に人間よりも賢いのか、それとも単に優れた反応速度を利用して勝っているだけなのか疑問に思う人もいるかもしれません。しかし、AIが何年も練習してきた人間のチェスプレイヤーを上回るのに、わずか数週間しかかかりませんでした。スマッシュやポーカーなどの分野での最近の AI の勝利は、ゲームのパラメータが変更されると AI がさまざまなタイプのゲームの動きを学習できることを示しています。 2 つのゲームではさらに、異なる AI システムがゲームの性質に応じて互いに協力したり戦ったりすることを学習できるという点が強調されました。

ある意味では、人工知能をプログラムするものはすべてゲームとして理解することができます。ゲームでプレイヤーに勝つ場合でも、戦術を分析する場合でも、AI は特定のパラメータによって制約され、プログラマーによるプログラミングを通じて、またはニューラル ネットワークによる学習を通じて、継続的に自己改善することができます。人類の歴史を通じて、ゲームは知性の象徴と見なされることが多く、例えば多くの偉大な指導者がチェスを楽しんでいました。 AI はさまざまなゲームで人間に勝つことができるため、プログラマーは AI をさまざまな種類の知能でプログラムできることがわかります。ニューラルネットワークと機械学習は人工知能に革命を起こす可能性を秘めていますが、あらゆるゲームで人間に勝つにはまだかなりの進歩が必要です。

(英語ソース/engdaget翻訳/機械Xiaoyi校正/Yudan)

NetEase Smart Man(WeChat 公開アカウント: smartman163)をフォローして、専門的な人工知能情報や AI レポートを入手してください。

<<:  Alibaba iDSTのビジュアルコンピューティング責任者、Hua Xiansheng氏:アルゴリズムの利点は消えつつある

>>:  顔認識はどのような技術サポートに依存していますか?個人のプライバシーが漏洩するでしょうか?

ブログ    
ブログ    
ブログ    

推薦する

人間を機械に置き換えることで雇用上の課題が生じています。労働市場の将来はどうなるのでしょうか?

現在、世界中で加速する人工知能の発展は各国から大きな注目を集めています。単純な機械動作でも複雑な知覚...

ビデオメタデータとは何ですか?

ビデオ メタデータの分析と使用は、セキュリティにおける現在の多くの刺激的な開発の基盤となっています。...

人間が理解できる音声を合成するために、機械はどのような「ディープラーニング」を行っているのでしょうか?

ディープラーニングは2006年に登場して以来、近年急速に発展し、学術研究と企業アプリケーションの両方...

デジタルビジネスにおける AI の 6 つの設計原則

人工知能 (AI) は、現在人間が行っている意思決定やタスクを補強し、自動化する機能を備えているため...

...

ビジネス界におけるAIと自動化の変革的役割

人工知能や自動化などの破壊的技術の急速な発展により、現代の企業は変化しています。これらのテクノロジー...

AI危機の前に、この3つの資質を備えた子供たちが将来勝利するだろう

[[234521]]文|ハオ・ジンファンSF作家第74回ヒューゴー賞受賞者公式アカウント「小唐科学子...

AIとIoTはどのように連携するのでしょうか?

人工知能 (AI) とモノのインターネット (IoT) の統合により、技術革新と機能の新しい時代が到...

先日の清明節にはドローンが頻繁に登場しました!

近年、飛行制御、ナビゲーション、センシングなどの技術の急速な発展に伴い、ドローン業界はますます大きく...

PyTorch と TensorFlow のどちらが優れていますか?最前線の開発者の声

Theano、TensorFlow、Torch、MXNetから最近人気のPyTorchなど、ディープ...

素晴らしい!ニューラルネットワークがフロントエンドコードを作成します

今後 3 年間で、ディープラーニングはフロントエンド開発の現状を変え、プロトタイピングの速度を向上さ...

人工知能の第三の冬が来るのか?

人工知能については人々の想像力は尽きることがなく、小説や映画でも長い間最もホットな話題となってきまし...

5Gベースバンドに機械学習ユニットを追加:クアルコムには多くのAI脳の穴がある

最も先進的な AI テクノロジーは、最も広く使用されているモバイル チップに使用されています。最近、...

...

言葉はもっと欺瞞的だ! MITの最新研究:DeepFakeによる顔の加工はペンを使った編集ほど良くない

​DeepFake は発売以来、潜在的な「悪質な AI」としてリストアップされてきました。 有名な「...