衛星と機械学習はどのようにして海洋のプラスチック廃棄物を検出できるのでしょうか?

衛星と機械学習はどのようにして海洋のプラスチック廃棄物を検出できるのでしょうか?

プラスチック廃棄物が海洋生物にとって常に恐ろしい脅威となっていることは誰もが知っているはずです。しかし、これまでのところ、海洋におけるプラスチック汚染を検出することは依然として困難です。

プラスチック製品にはさまざまな色、サイズ、種類があり、そのほとんどはさまざまな化学物質で作られています。さらに悪いことに、地球の海は広大で、毎年投入される何百万トンものプラスチックはすぐにあらゆる場所に広がります。この「大きなプラスチック」は徐々に小さなプラスチック片に分解され、追跡が困難になり、海洋生物に致命的な脅威をもたらします。

海洋のどの地域にプラスチック製品が最も多く存在するかを特定することによってのみ、対象を絞った清掃および汚染防止対策を開発することができます。

科学誌「ネイチャー・コミュニケーションズ(サイエンティフィック・リポーツ)」に掲載された最新の研究結果によると、機械学習に基づく気象衛星は海洋環境におけるプラスチック汚染を追跡する任務を遂行できるという。

英国プリマス海洋研究所の科学者チームは、訓練された機械学習アルゴリズムを使用して、欧州宇宙機関が運用する2つの衛星から送信されたデータを分析し、プラスチック廃棄物に関する手がかりを見つけるというテストを実施しました。

[[326572]]

▲写真:気象衛星の主な役割は、地球を周回する軌道から強力な雷雨や竜巻を観測することです。画像提供: NASA

本研究で使用した2機のSentinel-2衛星は、いずれも10メートルの基本ピクセル単位で海面の高解像度画像を収集できる12バンドのマルチスペクトル機器( MSI )センサーを搭載しています。 2 つの衛星の連携により、システムは 2 ~ 5 日ごとに世界中の沿岸地域からデータを繰り返し収集できます。言い換えれば、このシステムは地球上の海に面したすべての場所のパノラマ画像を月に 6 ~ 15 回収集できることになります。これは膨大なデータです。

衛星は光信号を含むさまざまな種類のデータを収集し、物体から反射された光信号の波長に基づいて対象の特定の物質を区別することができます。理論的な観点から見ると、透明な海水は近赤外線 ( NIR ) から短波赤外線 ( SWIR ) のスペクトル範囲の光波を効率的に吸収しますが、プラスチックや自然の残骸などの浮遊物は大量の近赤外線光波を反射します。この光吸収レベルの違いにより、衛星は理論的には海面上の浮遊物体を検出することも可能になります。

浮遊物の種類によって近赤外線信号も異なります。研究者らは衛星データを使用して機械学習アルゴリズムを訓練し、衛星が捉えた光信号データから浮遊プラスチックの光信号を識別することに成功し、ギリシャ沿岸の浮遊プラスチック地域を発見した。研究者らはまた、この光データを使用して、特定の近赤外線信号を浮遊するプラスチックの破片と関連付けるアルゴリズムを学習させた。同様に、アルゴリズムはプラスチックを海藻、流木、発泡スチロールなどの天然素材と区別する方法を徐々に学習していきました

[[326573]]

▲図:衛星は2~5日ごとに世界中の沿岸地域を繰り返し撮影し、海洋のプラスチック汚染状況を追跡できる大量のデータを収集します。

アルゴリズムの実行が開始すると、研究者らは、アクラ(ガーナ)、サンファン諸島(カナダ)、 ダナンベトナム)、スコットランド(英国)の世界4つの沿岸水域の衛星データを使用してテストを開始しました。全体として、このアルゴリズムはプラスチック汚染を 86 パーセントの精度で特定することができ、サンファン諸島のデータの分析では 100 パーセントの精度を達成しました。

さらに、このアルゴリズムは衛星データに基づいて、5 mm以上のサイズのプラスチック片を見つけることもできます。このタイプの「大きなプラスチック」は徐々に小さなプラスチック片に分解され、海洋生物に致命的な脅威をもたらします。上記の結果は、衛星データと機械学習アルゴリズムを組み合わせることで、人類が地球規模のプラスチック汚染問題を追跡し、除去するのに役立つことも示しています。

<<:  エンタープライズ AI の大きな課題を解決する方法

>>:  人工知能のセキュリティ:将来の戦争のリスクと課題

ブログ    
ブログ    
ブログ    

推薦する

508件のAI防疫事例のデータ分析:各地域でのAI防疫パフォーマンス

新型コロナウイルス肺炎の流行が始まって以来、人工知能技術は、流行の監視と分析、人員と物資の管理、医療...

...

旅行を恥ずかしがる必要はありません。国内の観光地がAIを導入し、スマートな旅行の新たなシナリオを実現

旅行に出かけることは、祖国の美しい川や山を鑑賞し、「詩と遠い場所」を追求することです。 AIの助けに...

...

TensorFlow を使用してシンプルなロジスティック回帰モデルをゼロから構築する

TensorFlow は Python ベースの機械学習フレームワークです。 Coursera でロ...

人工知能はどのようにして新しい世界を創造するのでしょうか?

AI は時間の経過とともにさらに賢くなり、パワーを増していきます。私たちの多くにとって、人工知能 ...

実践編 | アポロレーンチェンジの詳しい説明

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

わずか数分で 8 文字のパスワードを解読するにはどうすればよいでしょうか?

翻訳者 |ブガッティレビュー | Chonglouセキュリティの専門家は長い間、オンラインアカウント...

将来、人工知能が自発的な感情知能を獲得することは可能でしょうか?

人工知能の発展は人類の生存を脅かすという見方は以前からあった。人類の知能の典型的な反映である囲碁で、...

Belcorp CIO: AI による IT 研究開発の見直し

多国籍美容企業ベルコープは過去3年間、パンデミック、消費者行動の変化、サプライチェーンの混乱、インフ...

2020 年のトップ産業人工知能アプリケーション

[[337240]]人工知能技術は今、世界を変えつつあります。多くの業界はすでに、ビジネス プロセス...

機械学習から最も恩恵を受ける4つの業界

機械学習は、将来性が最も高く、業界に最大のメリットをもたらす AI の分野です。関連レポートによると...

寒い冬の「火」、快手は流行に逆らって1,000人以上を募集

春が来たが、インターネットの寒い冬の影はまだ消えていない。年初から人員削減、外部採用の中止、採用削減...

各行列乗算には1光子未満が使用され、手書き数字認識の精度は90%を超え、光ニューラルネットワークの効率は数桁向上します。

現在、ディープラーニングは、ゲーム、自然言語翻訳、医療画像分析など、ますます多くのタスクで人間を上回...