AI技術は非常に高いレベルに達しており、解読と着色は非常に進歩している

AI技術は非常に高いレベルに達しており、解読と着色は非常に進歩している

画像処理の分野では、AIブラシがますます目立つようになってきています。以前、AIロスレス画像拡大、AIモザイク除去、AI線画自動着色などのゲームプレイを紹介しました。今、誰かが私にAIブラックテクノロジーを勧めてくれました。ワンクリックで白黒写真をカラーに変えられるのです。

画像処理の分野でもAIが人気を集めています。AI技術によりモザイクも高解像度に復元可能。さらにAIで色付けもできるようになりました!

はい、AI は白黒写真を自動的にカラー写真に変換できます。白黒写真に色を付けるのは難しいのは、色情報が含まれていないことです。人間は対象物が何であるかを識別し、想像力と脳の補助に頼って白黒写真の色を推測し、手動で塗りつぶす必要があります。そして今、AIもこれを行うことができますか?この「Colourise.sg」というウェブサイトは、機械学習とニューラルネットワークアルゴリズムを使用して、数十万枚の写真を使用したカラーリングモデルを構築していると報告されています。信頼できるかどうかを見てみましょう。

Colourise.sg はシンガポールのウェブサイトです。中国の接続速度はあまり速くなく、接続に問題が発生することもあります。

Colourise.sg ページ

Colourise.sg の使い方はとても簡単です。ウェブページを開いたら、ページの下部にあるインタラクティブ ボックスまでスクロールすると、写真をアップロードできます。使用する前に、人間と機械による検証を行って、本人であるかどうかを確認する必要があります。検証コードをスワイプできない場合もありますので、数回スワイプしてください。

このフレームに色を塗りたい写真をアップロードしてください

Colourise.sg では、一度に 1 枚の白黒写真のみをカラー化できます。白黒写真をアップロードすると、Colourise.sg はすぐに結果を表示します。 Colourise.sg によって提供される結果は非常に興味深いものです。元の画像とカラー画像の比較チャートが提供され、ユーザーは元の画像とカラー画像の間の境界線をドラッグして、より詳細な比較を行うことができます。

Colourise.sg の AI カラー化効果はどれほど優れているのでしょうか? いくつかの写真セットを見てみましょう。

まずは第二次世界大戦の歴史的な写真です。この写真は元々白黒でした。Colourise.sg の色付け効果は比較的自然ですが、細部がうまく処理されていないことがわかります。全体的にはかなり良好です。

最新のカラー写真で Colourise.sg の機能をテストしてみましょう。ここでは、まずPhotoShopの脱色プログラムを使用してカラー写真を脱色し、それをColourise.sgにアップロードしてAIで色付けします。元のカラー写真と比較して、Colourise.sgのカラー化が本当に魔法のようであるかどうかを確認します。

まずは風景写真を2枚見てみましょう。

脱色バージョン

オリジナル画像

Colourise.sg カラー版

脱色バージョン

オリジナル画像

Colourise.sg カラー版

ご覧のとおり、Colourise.sg は全体的に非常に自然です。空、海水、ビーチ、緑の植物などの要素をより適切に判断し、比較的正確な色を与えることができます。特にこの海辺の写真は、色彩効果がオリジナルとほとんど区別がつかず、オリジナルの写真との違いはスタイルだけです。しかし、Colourise.sg では、細部の制御にまだ問題があります。たとえば、枯れ葉と緑の葉を区別できず、すべての植物を緑色で塗りつぶすことしかできないため、元の写真に比べて色がはるかに単調になります。

もう一枚の室内写真です。

脱色バージョン

オリジナル画像

Colourise.sg カラー版

Colourise.sg によるこの写真の処理効果は理想的ではありません。元の画像と比較すると、Colourise.sg によるカラーバージョンは色が大幅に失われ、コントラストが十分に強くありません。室内装飾における人工物については、Colourise.sg のカラースキームはあまり多くないようです。結局のところ、自然物と比較すると、人工物にはより多くの色の可能性があるので、Colourise.sg が色に関して保守的になる傾向があるのは理解できます。しかし、Colourise.sg が鉢植えの植物の色を正しく復元しなかったのは少し残念です。

最後に食べ物の写真を見てみましょう。

脱色バージョン

オリジナル画像

Colourise.sg カラー版

これは単なる自動車事故のシーンです。 Colourise.sg は基本的に色付けには一切関与していませんでした。つまり、Colourise.sg は食べ物や食器がどのような色であるべきかについて全く知らなかったのです。食品や食器も人工物です。Colourise.sg は、色の組み合わせが決まっていないアイテムの色付けは確かに苦手のようです。

要約する

Colourise.sg の機能はまだ比較的限られていることがわかります。 Colourise.sg は、自然の風景や人間の顔や肌など、比較的色が固定されたオブジェクトを正しく色付けできますが、家具、食品、食器など、数千万色ものオブジェクトを処理するのは困難です。もちろん、データベースがさらに充実するにつれて、AIは改善し続けることができます。将来的には、より優れたAIカラーリングソリューションが期待されます。

<<:  ワクチン開発におけるIoTとAIの役割

>>:  AI+医療:医療を救うには医師が率先して行動しなければならない

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

Githubの包括的なレビュー! 2021 年の最も素晴らしい AI 論文 38 件

[[443053]] 2021年は人工知能が飛躍的に進歩し続ける年です。最近、Github で誰かが...

...

オンラインショッピングデータに基づくスマートドアロック「ショッピングガイド」

ビル・ゲイツは1995年に「The Road Ahead」の中でこう述べています。「将来、スマート家...

2024年に向けて誰もが準備すべきAIトレンドトップ10

2024年には、AI技術を取り巻くより困難な問題のいくつかを解決するための進歩が見られることを期待...

AutoAI: ModelOps と DevOps を同期してデジタル変革を推進

[[418497]]より多くの組織が AI ベースのデジタル変革を進めるにつれて、AI 運用分野でい...

...

ヒューマノイドロボットはマジックを披露することができます。春節祭のスタッフにその詳細をお伝えします。

一瞬のうちに、ロボットは魔法を使うことを覚えたのでしょうか?まず、テーブルの上の水のスプーンを手に取...

機械学習を簡単にする 5 つのオープンソース Python ライブラリ

機械学習は興味深いものですが、実際に実行するのは難しく複雑です。ワークフローとパイプラインの組み立て...

人工知能技術はスマートビルの未来をどのように変えるのでしょうか?

賢明なビル管理者は、AI がビルの自動化だけでなく、より適応性の高いものにするのにも役立つことを知っ...

コードコーパス、大規模モデル、インテリジェントエージェントの魔法の杖を振ると、より強力なエネルギーが呼び出されます

熱帯雨林の杖が、ダンブルドアのようなあらゆる時代の並外れた魔法使いの伝説を生み出したのと同じように、...

...

インスピレーションプログラミング: 最大公約数アルゴリズムの分析

2 つの正の整数が与えられたら、その最大公約数を求めます。これは、コードを書く学生なら誰でも遭遇した...

...