機械学習における欠損値に対処する9つの方法

機械学習における欠損値に対処する9つの方法

データサイエンスはデータに関するものです。これは、あらゆるデータ サイエンスや機械学習プロジェクトの核心です。ほとんどの場合、さまざまなリソースからデータを収集したり、どこかからデータをダウンロードしたりすると、データに欠損値が含まれる可能性がほぼ 95% になります。欠損値を含むデータに対して分析を実行したり、機械学習モデルをトレーニングしたりすることはできません。これが、私たちがデータの前処理に 90% の時間を費やしている主な理由です。欠損データに対処するために使用できるテクニックは多数あります。この記事では、欠損データに対処する 9 つの方法を紹介しますが、まず欠損データが発生する理由と欠損データにはどのような種類があるのか​​を見てみましょう。

[[349617]]

欠損値の種類

欠損値には主に 3 つの種類があります。

  • 完全にランダムに欠損している (MCAR): データが MCAR の場合、すべての観測値が欠損する確率が同じであれば、変数は完全にランダムに欠損しています。つまり、欠損データはデータセット内の他の観測値や欠損値とまったく関係がありません。言い換えれば、欠落しているデータ ポイントはデータセットのランダムなサブセットです。
  • 欠損データはランダムではない (MNAR): 名前が示すように、欠損データとデータセット内の他の値の間には何らかの関係があります。
  • ランダム欠損 (MAR): これは、データ ポイントが欠損する傾向が欠損データとは関係なく、データセット内の他の観測データと関係していることを意味します。

データセットに欠損値が存在する理由は多数あります。たとえば、身長と年齢のデータセットでは、女性は通常年齢を隠すため、年齢の列に欠損値が多くなります。同様に、給与と経験のデータを作成すると、ほとんどの男性が給与を公開したがらないため、給与に欠損値が多くなります。人口、疾病、事故による死亡、納税者記録などのデータを準備するなど、より大規模なケースでは、情報を書き留めて実際の数字を隠すことをためらう人がよくいます。サードパーティのソースからデータをダウンロードする場合でも、ダウンロード中にファイルが破損して値が失われる可能性があります。理由が何であれ、データセットには欠損値があり、それを処理する必要があります。欠損値を処理する 9 つの方法を見てみましょう。

ここでは、古典的なタイタニック データセットも使用されます。

まずデータセットをロードし、すべてのライブラリをインポートしましょう。

  1. pandasをpdとしてインポートする
  2. df = pd.read_csv( "data/titanic.csv" ,usecols=[ '年齢' , 'キャビン' , '生存' ])
  3. df.isnull ().mean()
  4. df.dtypes

上記のコード ブロックを実行すると、Age、Cabin、Loading に null 値が含まれていることがわかります。 Age にはすべての整数値が含まれ、Cabin にはすべてのカテゴリ値が含まれます。

1. 平均値、中央値、最頻値の置換

この手法では、列内のすべての値の平均/中央値または最頻値で null 値を置き換えます。

平均: すべての値の平均

  1. def impute_nan(自由度、、平均):
  2. df[+ '_mean' ] = df[].fillna(mean) ##NaN -> 平均
  3.      
  4. impute_nan(df, 'Age' ,df.Age.mean()) ## Age平均(29.69)

中央値: すべての値の中心値

  1. def impute_nan(自由度、、中央値):
  2. df[+ '_mean' ]=df[].fillna(中央値)
  3. impute_nan(df, 'Age' ,df.Age.median()) ## Age中央値(28.0)

モード: 最も一般的な値

  1. def impute_nan(df,, モード):
  2. df[+ '_mean' ]=df[].fillna(モード)
  3. impute_nan(df, 'Age' ,df.Age.mode()) ## Ageモード(24.0)

アドバンテージ

  • 実装が簡単(外れ値に対して堅牢)
  • 完全なデータセットをより速く取得する方法

欠点

  • 元の差異の変更または歪み
  • 影響の関連性
  • カテゴリ変数の場合、モードが必要です。平均値も中央値も機能しません。

2. ランダムサンプル推定

この手法では、すべての nan 値をデータフレームからのランダムなサンプルに置き換えます。数値データの入力に使用します。データをサンプリングするには sample() を使用します。ここでは、まず NaN 値を埋めるためにデータのサンプルを取得します。次にインデックスを変更して NaN 値と同じインデックスに置き換え、最後にすべての NaN 値をランダム サンプルに置き換えます。

アドバンテージ

  • 実装が簡単
  • 分散歪みが小さい

欠点

  • あらゆる状況にそれを適用できるわけではありません。

ランダムサンプル注入で年齢列のNaN値を置き換える

  1. def impute_nan(df,変数):
  2. df[変数+ "_random" ]=df[変数]
  3. ## naを埋めるためのランダムサンプルがあります
  4. random_sample = df[変数].dropna().sample(df[変数] .isnull (). sum (),random_state=0)
  5. ##pandasは同じインデックスを持つ必要あります  注文 データセットをマージする
  6. random_sample.index =df[df[variable] .isnull ()]. index # random_sampleのインデックスを置き換える  NaNの場合 索引 
  7. 交換する  NaNが存在する場所
  8. df.loc[df[変数] .isnull (),変数+ '_random' ]=ランダムサンプル
  9. col=変数+ "_random"  
  10. df = df.drop (列、軸=1)
  11.  
  12. impute_nan(df, "年齢" )

3. 新機能でNAN値を取得する

この手法は、データが完全にランダムに欠落していない場合に最も効果的です。ここでは、データセットに新しい列を追加し、すべての NaN 値を 1 に置き換えます。

アドバンテージ

  • 実装が簡単
  • NaN値の重要性を理解

欠点

  • 追加機能の作成(次元の呪い)

  1. numpyをnpとしてインポートする
  2. df[ 'age_nan' ]=np.where ( df[ 'Age' ] .isnull (),1,0)
  3. ##値1を含む新しい列を1つ作成ます  Age の値NaN、それ以外の場合は 0 です。

4. 配布終了

この手法では、NaN 値を 3 番目の標準偏差値に置き換えます。また、データセットからすべての外れ値を削除するためにも使用されます。まず、std() を使用して 3 番目の標準偏差を計算し、その値で NaN を置き換えます。アドバンテージ

  • 実装が簡単です。
  • 欠損値がある場合はその重要度を取得します。

欠点

  • 変数の元の分布を歪めます。
  • NAN の数が多い場合。分布内の真の外れ値が隠されてしまいます。
  • NAN の数が少ない場合、置き換えられた NAN は外れ値とみなされ、後続の特徴エンジニアリングで前処理されます。

  1. def impute_nan(自由度、変数、中央値、極値):
  2. df[変数+ "_end_distribution" ]=df[変数].fillna(extreme)
  3.      
  4. extreme = df.Age.mean() + 3*df.Age.std() ##73.27 --> 3番目の標準偏差 
  5. impute_nan(df, '年齢' ,df.年齢.中央値(),極値)

5. 任意の値を置き換える

この手法では、NaN 値を任意の値に置き換えます。データセット内でどの値もこれより頻繁に出現してはなりません。通常、任意の値として、最小の外れ値または最後の外れ値を選択します。

アドバンテージ

  • 実装が簡単
  • 欠損値がある場合はその重要度を取得

欠点

  • 値は手動で決定する必要があります。

  1. def impute_nan(df,var):
  2. df[var+ '_zero' ]=df[var].fillna(0) # 0埋める(最小外れ値)
  3. df[var+ '_hundred' ]=df[var].fillna(100) # 100( last )埋める
  4.  
  5. impute_nan(df, '年齢' )

6. 頻繁なカテゴリーの帰属

この手法は、カテゴリデータ内の欠損値を埋めるために使用されます。ここでは、NaN 値を最も一般的なラベルに置き換えます。まず、最も一般的なラベルを見つけて、それに NaN を置き換えます。

アドバンテージ

  • 実装が簡単

欠点

  • より頻繁なラベルを使用しているため、NaN 値が多数ある場合は、それらを過剰表現の方法で使用する可能性があります。
  • 最も一般的なラベル間の関係を歪めます。

  1. def impute_nan(df,変数):
  2. most_frequent_category = df[variable].mode()[0] ##最も頻繁な
  3. df[変数].fillna(most_frequent_category,inplace= True )
  4.      
  5. for feature in [ 'Cabin' ]: ##カテゴリ特徴リスト
  6. impute_nan(自由度、特徴)

7. Nan値は新しいカテゴリとしてみなされる

この手法では、すべての NaN 値を Missing などの新しいカテゴリに置き換えるだけです。

  1. df[ 'キャビン' ] = df[ 'キャビン' ].fillna( '欠落' ) ##NaN -> 欠落

8. KNN充填を使用する

この手法では、sklearn を使用して KNN インプッター モデルを作成し、このモデルをデータに適合させて NaN 値を予測します。値を計算するために使用されます。これは 5 つのステップから成るプロセスです。

  • 列のリストを作成する(int、float)
  • 見積りを入力し、近隣住民を特定します。
  • データの適合に基づく推定値。
  • 変換されたデータ
  • 変換されたデータを使用して新しいデータ フレームを作成します。

アドバンテージ

  • 簡単に実装できる
  • 結果は通常最高です

欠点

  • 数値データにのみ適用されます

前回の記事で詳しく紹介したので、ここでは詳細は省きます。

Python で KNN アルゴリズムを使用して欠損データを処理する

9. すべてのNaN値を削除する

これは、使用および実装が最も簡単なテクニックの 1 つです。この手法は、NaN 値が 10% 未満の場合にのみ使用してください。

アドバンテージ:

  • 簡単に実装できる
  • 高速処理

欠点:

  • 大量のデータ損失を引き起こす
  1. df.dropna(inplace= True ) ##ドロップ  NaN含むすべて

要約する

欠損値を処理するテクニックは他にもたくさんあります。私たちの目標は、問題に最適なテクノロジーを見つけて、それを実装することです。欠損値を処理するのは常に良いアイデアですが、すべての値を削除しなければならない場合もあります。基本的にはデータの種類と量によって異なります。

最後に、すべてのコードはここにあります: https://github.com/Abhayparashar31/feature-engineering

<<:  機械学習サーバーの利用率とスケーラビリティを最大化するにはどうすればよいでしょうか?

>>:  運輸省は自動運転について「技術革新を歓迎し、支持する」と回答

ブログ    
ブログ    
ブログ    

推薦する

Gpts ストアの立ち上げが遅れています。適切な Gpts アプリケーションはどこで見つかりますか?

12月2日、OpenAIのChatGPTチームはGPT開発者に手紙を送り、「GPTストア」が202...

医療における会話型 AI の 5 つの用途

パンデミックの影響で、医療業界は世界中で医師、看護師、その他の医療スタッフの深刻な不足に直面していま...

カーリー:プロのカーリング選手に匹敵するスポーツロボット

海外メディアの報道によると、ロボットは多くのスポーツや活動で優れているが、1つのタスクだけを実行する...

展望: 2023 年のディープラーニングとメタバースの未来

ディープラーニング (DL) は、再帰型ニューラル ネットワーク、長期短期記憶、畳み込みニューラル ...

タクシー無料!百度:北京の自動運転タクシーサービスが全面オープン

簡単に体験できるものではないため、自動運転技術が実用化にはまだ遠いと感じている人も多いでしょう。しか...

製造業で「ロボット」が増加中

1997年、IBMが開発したディープ・ブルーがロシアのチェス名人ガルリ・カスパロフに勝利し、人工知能...

Gemini ProはGPT-3.5ほど優れていません。CMUは徹底的な比較研究を実施し、公平性、透明性、再現性を確保しています。

Google Gemini はどれほど強力ですか?カーネギーメロン大学は、専門的かつ客観的な第三者...

オフライン手法の可能性を最大限に引き出すために、武漢大学とKuaishouは分離型ビデオインスタンスセグメンテーションフレームワークDVISを提案した。

ビデオセグメンテーションタスクは、画像セグメンテーションタスクの拡張版です。ビデオ内のすべてのターゲ...

Google AIロボットトレーナーが秘密を暴露:低賃金と厳しい納期に不満を述べた後に解雇

6月15日、グーグルの新しいAIチャットボットのトレーニングを担当する契約労働者のグループは、低賃金...

ウォールストリートジャーナル:大手テクノロジー企業は依然として生成AIサービスで利益を上げようとしている

昨年末の ChatGPT の登場により、生成 AI の流行が巻き起こり、現在ではほぼすべての主要ソフ...

AI は製造業と産業用 IoT をどのように変えるのでしょうか?

Business Insider によると、製造業ではモノのインターネット (IoT) と AI ...

Google は交通信号に AI を導入して汚染を削減

タイミングの悪い信号は貴重な時間を無駄にするだけではありません。 Google の最高サステナビリテ...

OpenAI、開発者向けGPTチャットボットAPIのメジャーアップデートを発表、価格を値下げ

OpenAI は本日、大規模言語モデル API (GPT-4 および gpt-3.5-turbo を...

ChatGPTは来週Androidでリリースされ、事前登録が開始されました

ChatGPTは来週Android版をリリースすることを公式に発表し、Google Playストアで...