スマートホームデバイスにおける ML と IoT の融合

スマートホームデバイスにおける ML と IoT の融合

人工知能は定期的に盛んに研究されている技術です。世界中の研究者が、AI の応用と実装をより迅速かつ効率的にするために取り組んでいます。長年にわたり、人類は人工知能によってもたらされる潜在的なブレークスルーの例に遭遇してきました。心臓病の早期発見であれ、歴史的出来事の発見であれ、人工知能は誕生以来大きな進歩を遂げてきました。

日々の雑用を楽にするために、マサチューセッツ工科大学(MIT)と国立台湾大学の研究者が協力し、マイクロコントローラにディープニューラルネットワークを組み込んだ。これは、小さなチップの形の AI をスマート ウェアラブル デバイスや家電製品に実装できるようになり、モノのインターネット (デバイス) と AI の高度な統合が実現できることを意味します。 「MCUNet: IoT デバイスでの極小ディープラーニング」と題されたこの研究論文は、12 月にニューラル情報処理システム会議で発表される予定です。研究者たちは、このアプローチにより、IoT デバイスのセンサーの近くでデータ分析を行えるようになり、人工知能の応用範囲が広がることを期待しています。

MCUnetについて学ぶ

研究者が発明したデバイスはMCUnetと呼ばれています。これは、市販のマイクロコントローラ上で ImageNet 規模のディープラーニングを可能にするニューラル ネットワーク アーキテクチャです。 ImageNet は、各ノードが数千枚の画像で記述される画像データベースです。このモデルでは、ディープラーニング設計と推論ライブラリが共同で最適化されており、従来のマイクロコントローラのオンチップメモリ​​の制限という課題を解消し、メモリ使用量を削減します。

TinyNAS は、さまざまなマイクロコントローラ上の小さく多様なストレージ制約を処理する 2 段階のニューラル アーキテクチャ検索 (NAS) アプローチを備えたディープラーニング設計です。研究によると、TinyNAS は、まず小さなリソース制約に対応するために検索空間を自動的に最適化し、次に最適化された空間でニューラル アーキテクチャ検索を実行することでこの問題を解決します。 TinyNAS は、入力解像度とモデル幅をスケーリングしてさまざまな検索空間を生成し、検索空間内でネットワークを満たす計算失敗分布を収集して、その優先順位を評価します。さらに、TinyNAS は検索スペースが収容できる洞察に依存します。メモリ制約下での失敗が多いほど、ディープラーニング モデルは優れています。実験では、最適化された空間によって NAS 検索モデルの精度が向上することが示されています。 TinyNAS は、デバイス、レイテンシ、エネルギー、メモリなど、従来のマイクロコントローラに関連するさまざまな制約を、低い検索コストで自動的に処理できます。

研究者らは、TinyEngine はメモリ効率の高い推論ライブラリであり、不要なメモリオーバーヘッドを排除することで、検索空間が拡張され、より大規模で精度の高いディープラーニングモデルに対応できると指摘した。推論ライブラリは解釈ベースであり、追加の実行時メモリを必要とするため、TinyEngine は、メモリ オーバーヘッドを排除し、階層的最適化の代わりにメモリ スケジューリングを適応させるコード ジェネレータ ベースのアプローチをコンパイルして、メモリ使用量を削減するための戦略をより適切に策定します。最後に、ループ タイリング、ループ アンローリング、OP 融合など、さまざまなレベルで専用の計算最適化が実行され、推論が高速化されます。

研究者らは、従来のディープラーニングと比較して、MCUNet はシステムとアルゴリズムの共同設計を通じてリソースをより有効に活用していることを観察しました。研究者らは、既存のモデルがシェルベースのマイクロコントローラ上で記録的な 70.7% の ImageNet 精度を達成したと結論付けました。

<<:  ビッグデータ処理における人工知能の活用方法

>>:  2枚の写真でビデオを「計算」できる、Redditのネットユーザーに衝撃

ブログ    

推薦する

世界の通信業界の専門家が2024年を予測

世界の通信業界の専門家が2024年を予測5G が世界をカバーし、人工知能がネットワークを再形成し、デ...

PaaS でフェイルオーバー アルゴリズムを作成する際に避けるべき 3 つの落とし穴

[[125412]]クラウド サービスの停止が発生すると、通常はフェイルオーバー メカニズムがアクテ...

...

大連理工大学は、小規模サンプル認識にDeepBDCを提案し、6つのベンチマークで最高のパフォーマンスを達成した。

本論文では、確率と統計に基づく類似度測定法であるブラウン距離共分散をディープラーニングに初めて導入し...

李開復:「AI+」には4つの段階があると考える理由

編集者注: これは、2019年上海世界人工知能会議でSinovation Ventures会長のKa...

このAIはガールフレンドの自撮りを手伝います: 写真から3D動画を生成

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

AI を活用した検索と推奨はどれほど強力でしょうか?

著者 | ユン・チャオユーザーと情報の間には、検索か推奨のいずれかが存在します。百度の執行副社長であ...

人工知能が企業のバックオフィスへの参入を加速

人工知能は、あらゆる種類の企業のバックオフィスに大きく浸透しつつあります。バックオフィスは、ビジネス...

2020 年に最も注目される人工知能 (AI) アプリケーション トップ 10

人工知能または機械知能は、学習アルゴリズムを通じて人間のような知能をシミュレートします。今日、人工知...

Python を使用して画像からテーブルを抽出する

約 1 年前、私はファイルからデータ、主にテーブルに含まれるデータを抽出して構造化するタスクを割り当...

あなたは人工知能の前で「透明な人」ですか?

プライバシーがないと感じる人が増えているのは紛れもない事実です。最も直接的な例は、買い物をしたい場合...

人工知能のゲーム理論:エージェントと人間、エージェントと環境の間のゲーム関係の予備的調査

人工知能 (AI) は、コンピューターや機械をインテリジェントに動作させる方法を研究する分野です。機...

ディープラーニングにおける活性化関数の概要

この記事では、さまざまな活性化関数を紹介し、活性化関数の長所と短所を比較します。この記事は、人工ニュ...

AIはIoTベースのDDoS攻撃を阻止できる

研究者らによると、人工知能はインターネットサービスプロバイダー(IPS)がDDoS攻撃に先手を打つの...

物議を醸すClearview AI:顔認識アプリケーションは民間企業には販売されなくなった

生体認証技術といえば、アメリカの Clearview AI 社を挙げなければなりません。同社は最も包...