スマートホームデバイスにおける ML と IoT の融合

スマートホームデバイスにおける ML と IoT の融合

人工知能は定期的に盛んに研究されている技術です。世界中の研究者が、AI の応用と実装をより迅速かつ効率的にするために取り組んでいます。長年にわたり、人類は人工知能によってもたらされる潜在的なブレークスルーの例に遭遇してきました。心臓病の早期発見であれ、歴史的出来事の発見であれ、人工知能は誕生以来大きな進歩を遂げてきました。

日々の雑用を楽にするために、マサチューセッツ工科大学(MIT)と国立台湾大学の研究者が協力し、マイクロコントローラにディープニューラルネットワークを組み込んだ。これは、小さなチップの形の AI をスマート ウェアラブル デバイスや家電製品に実装できるようになり、モノのインターネット (デバイス) と AI の高度な統合が実現できることを意味します。 「MCUNet: IoT デバイスでの極小ディープラーニング」と題されたこの研究論文は、12 月にニューラル情報処理システム会議で発表される予定です。研究者たちは、このアプローチにより、IoT デバイスのセンサーの近くでデータ分析を行えるようになり、人工知能の応用範囲が広がることを期待しています。

MCUnetについて学ぶ

研究者が発明したデバイスはMCUnetと呼ばれています。これは、市販のマイクロコントローラ上で ImageNet 規模のディープラーニングを可能にするニューラル ネットワーク アーキテクチャです。 ImageNet は、各ノードが数千枚の画像で記述される画像データベースです。このモデルでは、ディープラーニング設計と推論ライブラリが共同で最適化されており、従来のマイクロコントローラのオンチップメモリ​​の制限という課題を解消し、メモリ使用量を削減します。

TinyNAS は、さまざまなマイクロコントローラ上の小さく多様なストレージ制約を処理する 2 段階のニューラル アーキテクチャ検索 (NAS) アプローチを備えたディープラーニング設計です。研究によると、TinyNAS は、まず小さなリソース制約に対応するために検索空間を自動的に最適化し、次に最適化された空間でニューラル アーキテクチャ検索を実行することでこの問題を解決します。 TinyNAS は、入力解像度とモデル幅をスケーリングしてさまざまな検索空間を生成し、検索空間内でネットワークを満たす計算失敗分布を収集して、その優先順位を評価します。さらに、TinyNAS は検索スペースが収容できる洞察に依存します。メモリ制約下での失敗が多いほど、ディープラーニング モデルは優れています。実験では、最適化された空間によって NAS 検索モデルの精度が向上することが示されています。 TinyNAS は、デバイス、レイテンシ、エネルギー、メモリなど、従来のマイクロコントローラに関連するさまざまな制約を、低い検索コストで自動的に処理できます。

研究者らは、TinyEngine はメモリ効率の高い推論ライブラリであり、不要なメモリオーバーヘッドを排除することで、検索空間が拡張され、より大規模で精度の高いディープラーニングモデルに対応できると指摘した。推論ライブラリは解釈ベースであり、追加の実行時メモリを必要とするため、TinyEngine は、メモリ オーバーヘッドを排除し、階層的最適化の代わりにメモリ スケジューリングを適応させるコード ジェネレータ ベースのアプローチをコンパイルして、メモリ使用量を削減するための戦略をより適切に策定します。最後に、ループ タイリング、ループ アンローリング、OP 融合など、さまざまなレベルで専用の計算最適化が実行され、推論が高速化されます。

研究者らは、従来のディープラーニングと比較して、MCUNet はシステムとアルゴリズムの共同設計を通じてリソースをより有効に活用していることを観察しました。研究者らは、既存のモデルがシェルベースのマイクロコントローラ上で記録的な 70.7% の ImageNet 精度を達成したと結論付けました。

<<:  ビッグデータ処理における人工知能の活用方法

>>:  2枚の写真でビデオを「計算」できる、Redditのネットユーザーに衝撃

ブログ    
ブログ    

推薦する

強力な大型モデルにはどんなスーパーパワーがあるのでしょうか?

先日、人工知能技術の可能性とそれに対する人々の懸念について語った際、人工知能研究会社OpenAIのC...

...

ハイブリッドエキスパートの限界を押し上げる: わずか 0.32% のパラメータ更新でモデルを微調整

ご存知のとおり、大規模なモデルのトレーニングにはコストがかかりますが、事前トレーニング済みのモデルを...

AIシナリオの実装を加速させる2019年北京人工知能産業サミットフォーラムが北京で成功裏に開催されました

2019年6月28日、北京で2019年北京人工知能産業サミットフォーラムが開催されました。主催は工業...

ショッピングをもっと便利に:Mogujie ビジュアル検索テクノロジーアーキテクチャの実践

[51CTO.com からのオリジナル記事] 周知のとおり、画像検索はコンピューター ビジョン分野に...

AIアルゴリズムの包囲とフードデリバリー業者の「ブレイクアウト」

システムに閉じ込められた配達員たちは反撃している。最近、海外のテクノロジーメディアWiredは、プラ...

これらの10の機械学習手法をマスターすれば、あなたはサークルで最も人気のある人になるでしょう

科学研究でも産業界でも、機械学習はホットな話題であり、新しい機械学習手法が次々と登場しています。機械...

...

人工知能による空中戦闘の時代が到来し、エースパイロットは職を失うことになるのだろうか?

最近、J-10やJ-20など我が国の先進的な国産戦闘機の開発に成功した中国航空工業集団の成都航空機設...

AIによる顔の変形は危険だが、VRスキーは素晴らしい

[[402233]]市民がVRスキー体験。本紙(記者 陳龍)5月27日、2021年中国国際ビッグデー...

基本モデル+ロボットの開発軌跡を見通すレビュー

ロボット工学は、特にスマートテクノロジーと組み合わせると、無限の可能性を秘めたテクノロジーです。近年...

AI導入における7つの最大の障壁とその解決方法

COVID-19 により、企業はデジタル変革の取り組みを数か月、場合によっては数年も加速させるようプ...

...