人間と機械の統合はなぜ難しいのでしょうか?

人間と機械の統合はなぜ難しいのでしょうか?

時間と空間を結びつけるのは速度であり、エネルギーと質量を結びつけるのも速度です。事実と価値を結びつけるものは何でしょうか? 人と機械を結びつけるものは何でしょうか? それは常に改訂される推論ルールでしょうか? それとも常に改訂されるルール推論でしょうか?

DeepMind の Alpha Go、Zero、Fold の Alpha は、ギリシャ語アルファベットの最初の文字で、最初、始まり、頭文字を意味します。

計算が事実や価値観、状況や認識を伝える手段であるならば、計算は主観と客観、感覚と概念を結びつけるワームホールです。

[[356171]]

人工知能における「人間」は「人間」ではない

一般的に言えば、特定のタスク状況では、物事の価値は事実上の(重要性の)量を中心に頻繁に変化しますが、それは決定論的な変化ではなく、不確実で集約的な変化であり、時には大きく、時には小さく、分散と集約は柔軟です。これは、私たちの日常生活における価値観に似ており、常に同化し、適応し、バランスを修正しています。ファインマンはこう言いました。「小さなスケールの物事は、大きなスケールの物事とはまったく同じようには動作しません。」逆も同様です。時には、変化する状況における事物の実際の量や価値は直線的に変化するのではなく、映画のショットのように、日常生活の中間的な時間や空間を必要とせずに、それ自体の論理的な手がかりに従って変化します。無から有を生み出すことも、有から無を生み出すこともできます。特定の状況下では、物事の事実性や価値が、どれだけ離れていても、瞬時に認識され、自動的なパターンマッチング効果が形成されます。

人工知能における「人」は、実際の「人」ではありません。自律性は知性を意味するものではなく、言い換えれば、自律性は知性の必要条件ではあるが十分条件ではない。価値観を持った自律的な主体だけが知的な存在であると言える。したがって、事実の自律性は単なる自動化であり、価値の自律性はインテリジェンスであり、洞察の自律性はさらにインテリジェンスです。現実の人間は主観性や存在論を持たないことが多く、システムや制度とともに変化します。

人間と機械は相互に作用し、機械は線形性を処理し、人間は非線形性を処理します。

良い作品は、多くの人々の創造の結果です。例えば、「Ordinary World」は、陸耀が書き、李野墨が語り、俳優が演じ、無数の読者/聴衆が考え、さまざまなメディアによって広められました...; 優れたインテリジェント製品やシステムも、多くの人々の創造の結果です。例えば、「AlphaGo」や「AlphaZero」は、Deep Mind によって開発され、以前のチェスマニュアルによって訓練され、大衆によって想像され、さまざまなメディアによって広められました...

ある人はこう言いました。「感性とは複雑なパターンのあいまいな計算であり、最もエネルギーを節約するものと最も効率的なものの間のバランスである。」実はそうではありません。感性知能は計算ではなく、計算が追加されたコンピューティングメカニズムです。これは複雑なパターンのファジー計算であり、最も省エネで効率的なバランスです。コンピュータのメカニズムは、何が起こったかの正確なプロセスを必ずしも理解していなくても、満足のいく答えを出すことができます。ただし、これらのプロセスは不透明であり、何ができて何ができないかを明確に証明することは困難です。感覚知能の場合、ルールが私たちが受け入れたくない推論を生み出す場合はルールを修正できます。また、私たちが修正したくないルールに違反する推論は拒否できます。事実を価値に変換することは、ルールと受け入れられた推論を調整する繊細なプロセスであり、最終的に決定される価値は、本人と私自身の間で達した合意にあります。おそらく、人工知能の基本法則は、人間の知能の法則を説明するのに実際には使えないのでしょう。

時間と空間を結びつけるのは速度であり、エネルギーと質量を結びつけるのも速度です。では、事実と価値を結びつけるものは何でしょうか。つまり、何かをする価値があるかどうかを測るためにどのような指標が使われるかということです。おそらくこれは、現実と仮想、現実とフィクション、構造と機能などの並行世界を結びつける問題なのでしょう。

人間と機械の統合における矛盾は、人間は発散し、機械は収束し、人間は弁証法的で、機械は規則的であり、一方が拡散し、他方が収束し、一方が動いており、他方が静かであることにあります。さらに、私たちが直面しているのは、多くの場合、1つの問題だけではなく、互いに絡み合ったさまざまな問題のグループです。したがって、純粋な数学的論理方法を使用して解決の目標を達成することは困難であるため、形式論理、弁証法的論理、さらには非論理的な手段も同時に使用する必要があります。

機械学習や人工知能の不確実性と説明不可能性は、帰納法、演繹法、類推法などの発明された推論メカニズムが、確かに一定の不完全性、不安定性、矛盾につながる可能性があることを人々が発見したことに主に起因しており、コンピューティングの規模が拡大し続けるにつれて、これらの不確実性と説明不可能性はさらに大きくなるでしょう。人間の反事実的推論と反価値的推論は、仮想的な仮定の観点から、これらの形式化された自然な欠陥を事前に防いだり警告したりすることができます。人間と機械の融合を認知的主題として扱うことは複雑性の問題を解決するのに効果的ですが、異なるタスクの下でそれらをどのように統合するかという問題を解決する必要があります。さらに、1人と1台の機械の単独融合と、複数人と複数台の機械のグループ融合は、基本的なメカニズムの面で大きく異なります。諺にあるように、3人の靴屋は1人の諸葛亮よりも優れています。

命題論理の重要な点は、それが二元的であるということです。各文(命題とも呼ばれる)は真か偽かであると想定されます。中間の答えはなく、不確実性と確率は受け入れられません。許可されるのは、真と偽の 2 つの「真理値」だけです。熱力学は論理よりも脳の機能に近いです。ロジックは統計に、単一ユニットはコレクションに、決定論的純粋性は確率的ノイズに置き換えられます。

<<:  YouTube でフォローすべき 5 人のデータ サイエンティストと機械学習エンジニア

>>:  自動運転車はどれくらい遠いのでしょうか?

ブログ    

推薦する

スマートリテール特別セッションの登録が開始されました。Baidu Brainが上海でAI+リテールの新たな活用法について議論します。

小売業と聞いて何を思い浮かべますか?独身の日のお買い物ラッシュ?クリスマス カーニバル?それとも階下...

アルゴリズム学者: 複雑なデータ世界のブラックボックスを開く人々

この記事は、Viktor Mayer-Schönberger と Kennedy Cukier によ...

省エネ1000倍!人間の脳のようなニューラルチップはAIモデルの実行時に大幅な電力節約が可能

現在最も成功している人工知能アルゴリズムである人工ニューラル ネットワークは、人間の脳内の実際のニュ...

AIとセキュリティ:繋がる双子

人工知能とセキュリティは、非常に重要かつ興味深い2つの分野です。それぞれの空間について書かれた本はあ...

将来の旅行に関する最初の質問:自動運転による交通渋滞の解決策は本当に実現可能でしょうか?

交通渋滞問題は北京、上海、広州の都市脳血栓症となっている。我々の巧妙な統治の下では、都市部の道路渋滞...

ニューラルスタイル転送アルゴリズムで絵を描くことを学習する人間は、芸術分野で人工知能に負けるのでしょうか?

人工知能はますます多用途になり、すでに私たちの仕事のすべてを人工知能が引き継ぐことができるようです。...

グーグルは、人工知能の進歩により飛行機による地球温暖化への影響を大幅に軽減できると主張

グーグルは8月14日、飛行機による気候への影響を大幅に軽減できる人工知能の分野で大きな進歩を遂げたと...

マスク氏も騙された。AIの虚偽の内容が「リアル」すぎる

イスラエルとパレスチナの紛争が深刻化するにつれ、ソーシャルメディアのプラットフォーム上には現地の情景...

米国の自動車所有者調査:自動運転車に楽観的な自動車所有者が増えている

一般の人々は自動運転車についてどう思っているのだろうか?市場調査会社CarGurusは最近、将来の自...

自動運転にはバブルが必要

業界に「金儲けの見込み」があれば、必然的に「混乱」が起こります。 10年前はスマートフォンでしたが、...

陸奇氏が楽観視するAI時代のGitHubがついに実現へ

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

業界に革命を起こすスマートパッケージング技術トップ10

ほとんどの人がサプライチェーン技術について考えるとき、パッケージングは​​おそらく最初に思い浮かぶも...

スマートコミュニティはどれくらい「スマート」なのでしょうか?知能の背後にある技術的応用を解釈する

モノのインターネット技術の発展と普及に伴い、WIFi、GPRS、LoRaWANなどの通信プロトコルが...

画像内の文字の教師なし学習

[[201526]]人間の行動に関する研究が最近、Nature の子会社である Nature Hum...