Google が新しいセマンティック セグメンテーション データセットをリリースしました。ちなみに、私はトップに立つモデルを開発し、CVPR2021に採択されました

Google が新しいセマンティック セグメンテーション データセットをリリースしました。ちなみに、私はトップに立つモデルを開発し、CVPR2021に採択されました

人間は、平面の写真を見ると、再構築された 3D シーンのレイアウトを想像し、2D 画像に含まれる限られた信号に基づいてオブジェクトを認識し、インスタンスのサイズを決定して、3D シーンのレイアウトを再構築することができます。

この問題には逆光学問題と呼ばれる用語があり、これは網膜像から網膜刺激源へのぼやけたマッピングを指します。

自動運転などの現実世界のコンピューター ビジョン アプリケーションは、3D オブジェクトの位置特定と識別にこれらの機能に大きく依存しており、2D 画像に投影された各 3D ポイントの空間位置、セマンティック カテゴリ、インスタンス ラベルを AI モデルが推測する必要があります。

画像から 3D 世界を再構築する機能は、単眼深度推定 (単一の画像から深度を予測) とビデオ パノプティック セグメンテーション (インスタンス セグメンテーションとセマンティック セグメンテーション) という 2 つの独立したサブタスクに分解できます。

研究者は通常、計算されたモデルの重みを複数のタスク間で共有することにより、タスクごとに異なるモデルを提案します。実際のアプリケーションでは、これらのタスクを統合されたコンピューター ビジョン モデルとともに処理することで、展開を簡素化し、効率を向上させることができます。

この研究背景を踏まえ、Google は深度を考慮したビデオ パノラマ セグメンテーションを通じて視覚を学習する新しいモデル ViP-DeepLab を提案しました。これは CVPR 2021 に採択されており、単眼深度推定とビデオ パノラマ セグメンテーションを同時に解決することを目指しています。

この論文では、2 つのデータセットも導出し、深度推定とビデオ パノラマ セグメンテーションを同時に評価できる、Depth-Aware Video Panoramic Quality (DVPQ) と呼ばれる新しい評価メトリックも提案しました。

ViP-DeepLab は、画像平面上の各ピクセルに対してビデオのパノプティックセグメンテーションと単眼深度推定を共同で実行し、サブタスクのいくつかの学術データセットで SOTA 結果を達成する統合モデルです。

ViP-DeepLab は、連続する 2 つのフレームを入力として他の予測を実行し、出力には最初のフレームの深度推定が含まれ、各ピクセルに深度推定値が割り当てられます。

さらに、ViP-DeepLab は、最初のフレームに表示されるオブジェクトの中心に対して、連続する 2 つのフレームの中心回帰を実行します。これは、中心オフセット予測と呼ばれるプロセスであり、これにより、両方のフレームのすべてのピクセルを、最初のフレームに表示される同じオブジェクトにグループ化できます。以前に検出されたインスタンスと一致しない場合、新しいインスタンスが発生します。

ViP-DeepLab の出力は、ビデオのパノプティック セグメンテーションに使用できます。連続する 2 つのフレームを入力として連結します。セマンティック セグメンテーション出力は各ピクセルをそのセマンティック カテゴリに関連付けますが、インスタンス セグメンテーション出力は最初のフレームの単一のオブジェクトに関連付けられた両方のフレームのピクセルを識別します。入力画像は Cityscapes データセットからのものです。

この論文では、Cityscapes-VPS、KITTI 深度予測、KITTI マルチオブジェクト追跡およびセグメンテーション (MOTS) など、いくつかの一般的なベンチマーク データセットで ViP-DeepLab をテストしました。

ViP-DeepLab は SOTA 結果を達成しました。Cityscapes-VPS テストでは、ビデオ パノラマ品質 (VPQ) が従来の方法よりもはるかに優れており、5.1% に達しています。

KITTI 深度予測ベンチマークにおける単眼深度推定の比較。深度推定メトリックの場合、値が小さいほどパフォーマンスが優れています。差は小さいように見えるかもしれませんが、このベンチマークで最高のパフォーマンスを発揮するメソッドの差は通常、SILog で 0.1 未満です。

さらに、VIP-DeepLab は、新しいメトリック HOTA を使用して、KITTI MOTS 歩行者および自動車のランキング メトリックの大幅な改善も達成しました。

最後に、この論文では、新しいタスク、つまり深度を考慮したビデオ パノプティック セグメンテーション用の 2 つの新しいデータセットも提供されており、ViP-DeepLab がテストされており、このモデルの結果はコミュニティが比較するためのベースライン モデルになります。

ViP-DeepLab は、ビデオ パノプティック セグメンテーション、単眼深度推定、および複数オブジェクトの追跡とセグメンテーションにおいて最先端のパフォーマンスを実現するシンプルなアーキテクチャを備えています。このモデルは、2D シーンにおける現実世界のさらなる研究にも役立ちます。

<<:  探索的データ分析: 人工知能と機械学習の有効性を判断するための第一歩

>>:  3万回以上の地震訓練を実施した後、彼らは揺れの強さを素早く予測する新しい方法を発見した。

ブログ    
ブログ    

推薦する

では、機械学習とディープラーニングの違いは何でしょうか?

ディープラーニングは機械学習アルゴリズムのサブクラスであり、より複雑であることが特徴です。したがって...

...

現代オフィスのデジタル変革

企業は、迅速かつ効率的に適応し、生産性、快適性、持続可能性を向上させるスマート オフィス テクノロジ...

基本に立ち返る: 一歩先を行くために読むべき 5 つのデータ サイエンス論文

この記事は公開アカウント「Reading Core Technique」(ID: AI_Discov...

AI に関する知っておくべき 29 の統計とトレンド

ChatGPTは2022年11月の爆発的なリリースに続いて世界を席巻し、2023年には人工知能(AI...

Googleの失敗が露呈: 内部にリーダーがおらず、生の画像の仕組みが「多様」すぎた

Google Geminiの写真をめぐる論争はまだ収まらず、さらに衝撃的な内部情報が暴露された。 P...

...

ニューラル ネットワーク: 神秘的で驚異的なニューラル ネットワークの完全な歴史

[[346995]]さまざまな資料を読んでいくうちに、ニューラルネットワークの歴史に深く魅了されるよ...

座標系の変換を本当に理解していますか?自動運転にはマルチセンサーが不可欠

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

ChatGPTのモバイル収益は9月に460万ドルという過去最高を記録し、成長疲れが現れ始めている。

10月10日、人工知能チャットボットChatGPTのモバイル分野での取り組みは大きな成果をもたらし...

人工知能の市場推進要因、制約、機会

今日、ますます多くの企業が、事業運営に人工知能技術を活用しています。このテクノロジーは非常に建設的で...

マーケティングにおける AI についての考え方を変える 10 のグラフ

Adobe の最新の Digital Intelligence Briefing によると、トップク...

転換点までのカウントダウン:AI サーバーが市場を完全に支配するにはどれくらいの時間がかかるのでしょうか?

ハイパースケーラーとクラウド プロバイダーがインフラストラクチャの計画を検討する場合、まず全体的な動...

ロボットが高齢者介護のあらゆる問題を解決する

人口の高齢化は世界中の発展途上国や先進国が直面する深刻な問題となっている。 少数の人間が大多数の人間...

Google I/O 2018 に注目: AI に始まり、AI に終わる

北京時間9日午前1時(米国現地時間5月8日午前10時)、カリフォルニア州マウンテンビューで2018 ...