AI 導入の謎を解明: クラウドとエッジ

AI 導入の謎を解明: クラウドとエッジ

現在、ディープラーニング テクノロジーを展開できる方法としては、デバイス上への直接展開、クラウド内への展開、エッジでの展開の 2 つがあります。

処理能力とメモリ消費量、および AI モデルの規模に対する要求が厳しいため、これらの展開のほとんどはクラウドに依存しています。クラウドの導入により、AI は高性能コンピューティング システムのパワーを活用できるようになりますが、課題は残ります。処理のためにデバイスとクラウドの間でデータを送受信する必要があるため、プライバシーに関する懸念が生じ、遅延、帯域幅、接続性による制限が生じます。

このため、業界ではエッジ AI の開発に注力するようになりましたが、このトピックについては前回の記事でも触れました。これらの取り組みは主に、AI モデルのフットプリントを削減し、エッジ デバイスに直接展開できる AI モデルのトレーニングに新しい方法を導入することに重点を置いています。

エッジ AI は、スマート デバイスがリアルタイムで真に自律的な意思決定を行えるようにすることでクラウドの欠点を解決し、ディープラーニングを促進します。具体的には、これにより、すべてのデータをクラウドとの間で継続的に送受信する必要がなくなり、プライバシー、帯域幅、およびレイテンシの制約が改善されます。さらに、新たなエッジ AI の導入方法により、速度、電力、メモリ消費が大幅に改善され、コストを削減し、環境への影響を抑えることができます。

一方の利点を他方で完全に置き換えることはできません。そのため、現実世界で AI を導入する場合、最も効果的なのはクラウドとエッジのハイブリッド アプローチを採用した AI 導入です。しかし、ハイブリッドアプローチとはどのようなものでしょうか?

より良い結果を得るためのハイブリッド展開のための無料ワークフロー

最初のステップは、エッジでリアルタイムに意思決定を行う必要があるユースケースと、長期的な分析と改善のためにクラウドで処理できるユースケースを特定して、効率とスケーラビリティを最大化するワークフローを除外することです。

自動運転車、農業用ドローンやシステム、カメラ、モバイルデバイスなど、リアルタイムの意思決定が必要な状況で、スマートエッジデバイスにディープラーニングを導入すると、同時に、システムはデータをクラウドにアップロードして保存し、さらに強力なエンジンで処理および分析を実行することもできます。これにより、システムは高性能コンピューティングの利点を実現し、クラウド内のデータを他のシステムのデータと組み合わせることができるようになります。

この結合されたデータを使用することで、モデルを再トレーニングし、継続的に改善することができます。クラウドで再トレーニングされたら、新しいモデルをエッジに再展開できます。

クラウド AI とエッジ展開の利点を組み合わせると、単一のアプローチを単独で採用するよりも強力になります。具体的には、クラウド AI の処理能力と高いパフォーマンスは、エッジ AI の効率性、速度、自律性を補完することができます。

ハイブリッドアプローチの実践

自動運転車への AI の応用は、補完的なアプローチの利点を示す具体的なユースケースです。

このユースケースでは、車が安全に運転できるようにするために、AI モデルがデバイスと車両上で直接エッジで実行されることが重要です。車がデータをクラウドに送信して処理する前に行動を起こせなければ、安全を確保するために十分な速さで反応して判断することができません。さらに、車両が継続的にインターネット接続を維持できるという保証はありません。

しかし、自動車メーカーは、リアルタイムの意思決定に必要な量よりも多くのデータを収集することでも利益を得ることができます。収集したデータをクラウドに送信して処理することは、モデルを継続的に改善し、再トレーニングするための鍵となります。これにより、デバイスのデータを徹底的に処理できるだけでなく、ディープラーニングからの洞察を他のエッジデバイスから収集されたデータと組み合わせて、より詳細な入力と理解が可能になります。この洞察に基づいて、アルゴリズムを継続的に改善し、自律走行車システムを開発することができます。

次は何か?エッジAIとクラウドAIの進化

クラウドやエッジで AI の力を活用する組織が増えるにつれ、現実世界の価値をもたらすディープラーニング アプリケーションがさらに増えるでしょう。

5G の台頭により、ディープラーニングの発展は今後も促進されるでしょう。 5G が普及するにつれて、スーパーコンピューティングのアクセシビリティが向上します。具体的には、5G によりエッジからクラウドまでのデータ共有がよりシームレスかつ効率的になり、より効率的なデータ処理が可能になります。

しかし、5G であっても、リアルタイムの意思決定はエッジで行う必要があります。クラウドは依然として、エッジ アプリケーションのデータ処理ニーズを即座に満たすことはできません。したがって、AI 企業がモデルの導入を計画する際には、エッジ AI に引き続き重点を置く必要があります。クラウドとエッジの導入に対して補完的なアプローチを採用する企業は、モデルの短期的な処理能力と、モデルを効果的に保存、処理、改善する長期的な能力の両方において、最大の成功を収めることができます。

<<:  脚付きロボットはなぜ4本の脚を持たなければならないのでしょうか?ロボットはどんな姿であるべきか?MITはコンピューターにルールを設定させる

>>:  「顔認識」は諸刃の剣です。どうすればそれを利用して被害を回避できるのでしょうか?

ブログ    
ブログ    
ブログ    
ブログ    
ブログ    

推薦する

このアルゴリズムは顔認識の「マスク」問題を解決し、2日間で1,000人のコミュニティで97%の精度を達成しました | AIが疫病と戦う

ますます成熟する人工知能は、新型コロナウイルス感染症対策の最前線で「逆転者」と呼ばれる特別な集団とな...

「深く」「鮮明に」見る - 画像の超高精細化におけるディープラーニングの応用

[[426283]]毎日肖像画を模写する練習を続けた結果、この芸術家はいくつかの重要な特徴だけを描い...

2022年に注目すべき4つのRPAトレンド

ロボティック・プロセス・オートメーション (RPA) はもはや目新しいものではなく、進化し成熟しつつ...

...

AI サイバーセキュリティ脅威マップ

12月15日、欧州連合ネットワーク情報セキュリティ機関(ENISA)は、 「人工知能サイバーセキュリ...

機械にプライバシーを学習させることはできるでしょうか?

機械学習では、モデルをトレーニングするために大量のデータが必要であり、通常、このトレーニング データ...

50億のブルーオーシャンが呼び寄せる、電力検査ロボットが最前線に

[[398288]]近年、気温が高くなり、多くの地域で扇風機やエアコンが使用されるようになり、それに...

...

自動化が医療にもたらす革命

長年にわたり、自動化はほぼすべての業界に浸透してきました。自動化は、工場の機械が組立ラインの生産を高...

世界で最も引用率の高い中国の AI ジャーナルではどのような研究が行われていますか?

[[410109]]人工知能(AI)研究に関しては、中国が現在最もホットな国です。清華大学人工知能...

偏見と不平等にノーと言いましょう!マイクロソフト、物議を醸していた顔認識サービスの提供を停止

マイクロソフトは、動画や画像に基づいて感情を識別するサービスを含む、人工知能を活用した顔認識ツールの...

...

...

DAMOアカデミーのAI研究により、初めて大規模な膵臓がんの早期スクリーニングが可能に

私たちの日常生活では、携帯電話のロック解除から検索エンジンを使った地図ナビゲーションまで、人工知能と...