人々がデジタルの世界に移行するにつれて、組織と顧客の関係はここ数年で変化してきました。顧客の期待はかつてないほど高まっており、組織は顧客と関わり、プロセスとサービスの効率と品質を向上させる新しい方法を見つける必要があります。このような背景から、一部の組織では、顧客サービスの向上を目的とした、よりスマートなエクスペリエンスとプロセス自動化を提供するために AI テクノロジーを導入し始めています。
AI は、組織がアプリケーション開発をスピードアップするのに役立つだけでなく、顧客がアプリケーションをより簡単に操作できるようにもします。より多くの組織がインテリジェント ソリューションに投資している理由と、顧客サービスにおける AI の最も一般的な用途について説明します。 人工知能への投資の機会と課題 人工知能が人類の破滅をもたらすと考えられていた時代は過ぎ去りました。調査会社ガートナーの人工知能技術に関する調査によると、2020年のコロナウイルス流行により多くの組織で人工知能技術への投資が鈍化したものの、回答者のわずか16%が人工知能への投資を一時的に停止し、7%が人工知能への投資を減らし、30%が投資を増やしたと回答した。 これは、組織が AI を導入することで、次のような多くのメリットが得られるためです。
したがって、自動化されたインテリジェントなソリューションのおかげで、AI に投資する組織は、運用コストを大幅に節約しながら収益と売上を増やすことができます。 しかし、実際に AI を本番環境に導入できる組織は 10 社中 1 社にすぎません。小規模な組織では導入に苦労する一方、専門のチームとツールを備えた大企業は、最も戦略的なプロジェクトにのみ AI を使用しています。これにはいくつかの理由があります:
顧客サービスを向上させる AI のユースケース AI ソリューションへの投資を計画しているものの、どこから始めればよいかわからない組織のために、優れた最新アプリケーションを提供しながら顧客サービスを向上させるために AI テクノロジーが使用されている一般的なユースケースをいくつか紹介します。 (1)チャットボット チャットボットは、顧客との交流を図る優れた方法であり、忙しいスケジュールを抱える組織に最適であり、顧客サービスにおける最も一般的な AI の使用例の 1 つです。組織はチャットボットを使用して次のことを行うことができます。
Drift と Intercom は最も人気のある 2 つのチャットボット ソフトウェアですが、最新のアプリケーション開発プラットフォームでは、ビジネス ニーズに合わせて完全にカスタマイズされたチャットボットを迅速に構築するためのツールが組織にさらに提供されています。その一例が、アプリ開発者が作成したチャットボット「CredAbility」です。これは個人の財務アシスタントとして機能し、ユーザーがクレジットスコアの向上などの目標を達成するための個人的な行動計画を作成するのを支援します。 (2)言語分析 言語分析ツールを使用すると、協力者は顧客のフィードバックから重要な情報を抽出し、それに基づいてコミュニケーション スタイルを調整できます。 言語分析は、コールセンターのエクスペリエンスを向上させるための重要なテクノロジーです。チャットボットは、言語分析を通じて会話している顧客の感情を検出し、それに応じて口調や行動を調整することができます。 言語分析の良い例としては、大手金融サービス組織向けに Deloitte が開発したアプリケーションである Behavior and Sentiment Analysis Tool (BEAT) が挙げられます。行動および感情分析ツール (BEAT) は、チャットボットと顧客との会話とその感情を記録し、顧客が感情的に脆弱であり、悪い結果になる可能性が高いかどうかを判断します。 デロイト・リスク・アナリティクスのパートナーであるアンディ・ウィットン氏は、コンダクトリスクは組織と規制当局にとって最優先事項であると述べた。しかし、それを特定することは、ランダムな選択によって行われる時間のかかるプロセスであることが多いです。金融サービス組織では、通常、顧客とのやり取りに多くの時間と労力が費やされます。 Deloitte True Voice を使用すると、金融商品の販売で使用される言語や行動を識別し、データ漏洩のリスクがある可能性がある場合にフラグを立てて、組織に重大なリスクをもたらす前に警告を発することができます。さらに、組織の顧客とのやり取りに関する洞察の発見、価値の向上、プロセスの最適化、従業員のトレーニングの改善にも役立ちます。 (3)物体検出 オブジェクト検出ソリューションにより、組織は画像認識に関連するタスクを自動化できます。 Revolut ユーザーであれば、このユースケースを経験したことがあるかもしれません。たとえば、新規顧客のオンボーディング エクスペリエンスを改善したい銀行や保険会社などです。オブジェクト検出を使用すると、顧客は身分証明書の写真をアップロードし、自撮り写真を撮り、身分証明書の顔と自撮り写真を自動的に照合するだけで本人確認を行えるため、対面での確認という面倒なプロセス全体が不要になります。 これにより、組織は多くの時間を節約し、顧客に優れたエクスペリエンスを提供できるようになります。 (4)光学文字認識(OCR) 光学文字認識は、ドキュメント処理の自動化でよく使用されます。光学文字認識 (OCR) を使用すると、組織はシステムをトレーニングして、請求書や注文書などの文書を読み取り、関連情報を抽出し、システム内の正しいフィールドに自動的に入力することができます。これにより、文書をよりデジタルかつ効率的に処理できるようになり、紙の文書からより迅速かつ正確に情報を取得できるようになります。 (5)機械学習モデル 組織は機械学習モデルをトレーニングし、それをアプリケーションに統合して、より適切で情報に基づいたビジネス上の意思決定に役立つ予測分析を開発できます。機械学習の使用例はいくつかありますが、最も一般的なものは次のとおりです。
たとえば、Randstad は機械学習テクノロジーを使用して求職者を検索するアプリケーションを開発しました。Spotter と呼ばれるこのアプリケーションにより、採用担当者は Randstad が提供する候補者データベースを即座に検索し、空いているポジションに最適な候補者を見つけることができます。 ランドスタッドの CIO 兼コミュニケーション テクノロジー マネージャーであるアン・ルーバー氏は、次のように述べています。「Spotter が導入される前は、データベースから適切な情報を取得するのは非常に面倒で複雑だったため、多くの採用担当者はそれを正しい方法で使用していませんでした。現在、Spotter により、採用担当者は候補者データベースから最適な人材をすばやく検索して特定することが非常に簡単になりました。その結果、採用率は非常に高く、オランダではすでに 2,000 人の採用担当者がこれを使用しています。」 顧客サービスを次のレベルへ 今日の顧客の要求はかつてないほど厳しくなっています。彼らは、これまで経験した中で最高の体験に匹敵する、スムーズで簡単な体験を期待しています。 AI テクノロジーは、効率性、プロセス、サービスを改善することで、顧客に優れたサービスを提供することができます。 |
<<: モザイクでも止められない!これらのAIアルゴリズムはワンクリックで高解像度を実現できます
>>: モザイクも安全ではないのですか? 「ブロックバスター」のモザイクはAIによってワンクリックで削除可能
機械学習において、アンサンブルという用語は、複数のモデルを並行して組み合わせることを指します。その考...
DeepFake は発売以来、潜在的な「悪質な AI」としてリストアップされてきました。 有名な「...
ガートナーの最近の調査によると、企業の47%が流行の発生以来人工知能(AI)への投資を維持しており、...
この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...
写真を見て会話できるAIは人間よりも優れたパフォーマンスを発揮するのか?最近、Azure は写真の内...
LLM搭載のAIエージェントで論文を自動作成できるようになりました!ウェブサイト: https:/...
[[421132]] [51CTO.com クイック翻訳]自然言語処理 (NLP) は、機械学習の専...
AI と IBM Watson の Personality Insights を使用して見込み客に確...
近年、拡散モデルはテキストから画像への生成において大きな成功を収め、画像生成品質の向上、推論パフォー...