認知システムが機械学習とセマンティック技術を組み合わせるべき理由

認知システムが機械学習とセマンティック技術を組み合わせるべき理由

ワインとチーズの組み合わせを識別するのに役立つアプリケーションを構築したいとします。最も優れたパフォーマンスを発揮するのはどれでしょうか? 機械学習のみに基づいたアプリケーション、専門知識のみに基づいたアプリケーション、あるいはその両方の組み合わせでしょうか?

[[383799]]

ほとんどの機械学習アルゴリズムは、「知識獲得ボトルネック」と呼ばれる AI におけるよく知られた問題を解決するために開発されました。これは、データ サイエンティストと並んで、主題専門家 (SME) が知識モデルを効果的かつ持続可能な方法で操作できるようにする方法という問題に対処します (「タクソノミーとオントロジー - 知識モデリングの陰と陽」も参照)。

機械学習アルゴリズムはデータから学習するため、実装が成功するかどうかは、データの品質と、データのセマンティクス (意味) をエンコードするために使用される方法に密接に関係していることは明らかです。セマンティック ナレッジ グラフは、データ品質を大幅に向上させるのに役立ちます。また、機械学習プロジェクトを開始する際にも役立ちます。ヤンコ・イワノフ氏の最近の記事では、一言で言えば「機械学習アルゴリズムは、まず言語の基礎を学ぶ必要がある子供である」と述べられています。

ここ数か月、私たちは市場の動向を観察してきました。さまざまな組織が機械学習に基づくアプリケーションの最初のバージョンを実装しました。 2 回目の反復では、次の 3 つの問題を解決するのに役立つテクノロジと方法を探しています。

  • 機械学習アルゴリズムは、あいまいさを排除するなど、データの正しい意味を「理解」するのに十分な信号を取得できないことがよくあります。精度は予想よりも低いです。
  • 認知プラットフォームでは、学習に機密データが必要になることが多く、そのデータはクラウドで処理すべきではありません。
  • 中小企業の豊富な経験と知識は体系化できず、アルゴリズムに組み込まなければ無駄になる。

人工知能は単なる技術ではない

「知識獲得のボトルネック」に直面しているということは、専門家の知識があらゆる組織にとって重要な資産と見なされていることも意味します。これらの黄金の宝物は、私たちの制御を超えた機械によって処理される可能性があるクラウドに移動されるべきではありません。むしろ、中小企業も含め、テクノロジーとアプローチの適切な組み合わせを効果的に実装することが重要です。優れた AI 戦略とは、より良い結果をすぐに生み出すことだけでなく、人間と機械の間に効果的なパートナーシップを構築する方法も意味します。

最近発表された IDC のホワイト ペーパーでは、AI の社会技術的側面について論じ、問題の核心に迫っています。「セマンティック テクノロジを採用して認知ソリューションを提供することで、組織は開発者や IT プロフェッショナルへの依存を大幅に減らすことができます。セマンティック データ管理がすでに導入されているため、データ駆動型アプリケーションの導入はドメイン エキスパートとビジネス ユーザーによって推進されます。」

<<:  人工知能は建設ロボットを誇大広告から現実のものへと変える

>>:  人工知能、ディープラーニング、機械学習の概念と違い

ブログ    
ブログ    
ブログ    

推薦する

...

「システムアーキテクチャ」マイクロサービスサービス劣化

[[238592]] 1. はじめにサービス低下とは何ですか?サーバーの負荷が急激に高まると、実際の...

XML 圧縮アルゴリズムについての簡単な説明

XML 圧縮ユニットテストコードクラスプログラム { パブリック静的文字列XML = @"...

分散型AIで製造業を強化

家庭内の新しい仮想アシスタントから、受信トレイから迷惑メールを削除するスパムフィルターまで、人工知能...

機械学習/ディープラーニング プロジェクトを始める 8 つの方法

[[392342]] [51CTO.com クイック翻訳]探索的データ分析から自動機械学習 (Aut...

...

パラメータ調整器、ここを見てください!ディープラーニングのトレーニング効率を向上させる2つのコツ

[[343402]] 1. トレーニングのボトルネックはどこですか? GPU 使用率が低い: モデル...

VRの悪夢にさよならしましょう! Meta Reality Labs は仮想世界の問題点を解決し、新しい VR の世界を再構築します

「世の中には2種類の人がいます。VRが世界を変えると考える人と、まだVRを試したことがない人です。」...

iSoftStoneはインテリジェントな顧客サービス市場に参入し、専門性と専門知識で地位を確立しました。

今日、カスタマー サービス ロボットは私たちにとって馴染み深い存在です。電話料金、住所、登録、ビジネ...

機械学習はどのように機能するのでしょうか? Googleはこの小さな実験で、

機械学習に関しては、それに関するプロジェクトを 1 つまたは 2 つ聞いたことがあるかもしれません。...

このマウスはFPSゲームのプレイ方法を自ら学習し、トレーニングの精度はプロのプレイヤーと同等です。

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

人工知能技術はビッグデータに基づいていますか?

[[201662]]今や、AI やロボットが徐々に人間の仕事に取って代わる時代になりました。知らな...

ソフトバンクの孫正義社長:AIの知能は10年以内に人間を超えると予想

ロイター通信は10月4日、ソフトバンクグループの創業者兼CEOの孫正義氏が本日、汎用人工知能(AGI...

MITの研究チームがスマート着替え補助ロボットの衝突防止アルゴリズムを改良

普通の人にとって、毎日起きて服を着るのはかなり簡単な作業です。しかし、身体に障害のある人にとって、着...

2021年の人工知能業界の予測

[[375635]] 2020 年は激動の年であり、組織は数多くの課題に直面しました。 2021年に...