3万回以上の地震訓練を実施した後、彼らは揺れの強さを素早く予測する新しい方法を発見した。

3万回以上の地震訓練を実施した後、彼らは揺れの強さを素早く予測する新しい方法を発見した。

[[396585]]

ビッグデータダイジェスト制作

編纂者:朱克進

DeepShake ネットワークのトレーニングに使用される地震データは、カリフォルニア州の 2019 年リッジクレスト地震の連続から取得されます。 DeepShake は、スタンフォード大学の Daniel J. Wu、Avoy Datta、Weiqiang Zhu、William Ellsworth によって開発されました。

開発者が7月5日に発生したマグニチュード7.1のリッジクレスト地震の実際の揺れを使ってDeepShakeの可能性をテストしたところ、ニューラルネットワークは、激しい地面の揺れが到達する7秒から13秒前に、リッジクレスト地域にシミュレーションの警報を送信しました。

研究者らは、地震の記録から直接、ディープラーニングを使用して迅速な警告と予測を行うという斬新さを強調した。 「ディープシェイクは、空間と時間の次元を超えて地震波形の信号を拾うことができます」とダッタ氏は説明した。

さらに、DeepShake は、機械学習モデルが地震早期警報システムの速度と精度を向上させる可能性を示しているとも述べた。

「ディープシェイクは、従来の早期警報システムで使用されている中間ステップの一部を省略し、地面の動きから直接揺れの規模を推定することで、地震の早期警報を改善することを目指しています」とウー氏は述べた。

ウー氏は、多くの早期警報システムはまず地震の場所と規模を特定し、次に地震動予測方程式に基づいて特定の場所の地震動を計算すると説明した。

同氏はさらに、「これらの各ステップは、地震動の予測を妨げる可能性のある誤差をもたらす可能性がある」と付け加えた。

この問題を解決するために、DeepShake チームはニューラル ネットワーク アプローチを採用しました。ニューラル ネットワークを構成する一連のアルゴリズムは、どの信号がネットワークの予測にとって「重要」であるかを研究者が判断することなくトレーニングされます。ネットワークは、将来の揺れの強さを最もよく予測できる特徴をデータから直接学習します。

「地震学用の他のニューラルネットワークを構築した際に、ニューラルネットワークはあらゆる興味深いことを学習できることに気付きました。そのため、正確な予測を行うために地震の震源地やマグニチュードは必要ないかもしれません」とウー氏は言う。「DeepShake は、事前に選択された地震観測所のネットワークでトレーニングされるため、それらの観測所のローカルな特徴がトレーニングデータの一部になります。」

「機械学習モデルを最初から最後までトレーニングすると、これらのモデルは追加情報を活用して精度を向上させることができると私たちは本当に考えています」と彼は語った。

ウー氏、ダッタ氏、および彼らの同僚は、DeepShake が、すでにカリフォルニアで稼働している ShakeAlert を補完し、地震早期警報システムのツールボックスを拡充するものになると考えている。ダッタ氏はさらに次のように付け加えた。「DeepShake をリッジクレスト以外にも拡大し、ダウンしたステーションやネットワーク遅延などの障害を含む現実世界での私たちの仕事に役立てられることを非常に嬉しく思っています。」

関連レポート:

https://www.seismosoc.org/news/deepshake-uses-machine-learning-to-rapidly-estimate-earthquake-shaking-intensity/

[この記事は51CTOコラムBig Data Digest、WeChatパブリックアカウント「Big Data Digest(id: BigDataDigest)」のオリジナル翻訳です]

この著者の他の記事を読むにはここをクリックしてください

<<:  Google が新しいセマンティック セグメンテーション データセットをリリースしました。ちなみに、私はトップに立つモデルを開発し、CVPR2021に採択されました

>>:  データセンター冷却のための人工知能: 単なる夢物語ではない

ブログ    
ブログ    

推薦する

...

チャットボットのさまざまな種類について学ぶ

チャットボットの種類は、提供されるさまざまな機能と応答に使用する方法によって決まります。チャットボッ...

「怠け者の経済」は、消費者向け家電製品のインテリジェント制御を主流に促進するでしょうか?

 新たな住宅消費トレンドが出現[[342344]] 90年代以降の世代である荘さんは、仕事から帰宅...

中国科学院自動化研究所は、科学サブジャーナル「自己組織化バックプロパゲーションがネットワーク学習効率を向上」を出版した。

[[430306]]人工知能の分野では、現在人工ニューラルネットワークで広く使用されているバックプ...

人工知能によるテキスト検出の実践的有効性に関する議論

AI 支援による記事執筆は今やどこにでもあります。ChatGPT は多くの言語ベースの AI アプリ...

...

AIが建物の快適性に革命を起こす

商業ビルでは、顧客と居住者の快適性がポジティブな体験を保証するために重要です。快適さの重要な要素は、...

Kuaishou Agents システム、モデル、データはすべてオープンソースです。

7BサイズのモデルはAIエージェントも処理できますか?最近、Kuaishouは「KwaiAgent...

人工知能がボトルネックに到達しました!学者らが「共同で」ディープラーニングに反対し、AIの今後の発展方向を指摘

ディープラーニングにおける現在の技術的なボトルネックに対応して、清華大学の張北氏を含む多くの学者や教...

李開復:中国の大型モデル競争は非常に激しく、最終的には大きな勝者が数人出るだろう

12月28日、ベンチャーキャピタリストで元Google China社長の李開復氏の予測によれば、中国...

Facebookの新しいAIモデルSE​​ERは自己教師学習を実現し、LeCunは最も有望だと称賛している

[[385451]]この記事はWeChatの公開アカウント「Xinzhiyuan」から転載したもので...

AIはデジタル変革の失敗から学ぶ必要がある

1 月に IBM は、デジタル トランスフォーメーションが予測された 150% ではなく -5% ~...

...

LexisNexisが生成AIの課題に挑む

生成型 AI の破壊的な脅威から抜け出す方法を模索している IT リーダーは、LexisNexis ...