エッジ AI の導入は幅広い業界で増加しています。この傾向が続くと、ビジネスだけでなく社会も変革するでしょう。 エッジ コンピューティングの分散型アプローチにより、データの輻輳、接続障害、伝送コストなどの制限が緩和されます。これにより、AI アプリケーションのパフォーマンスが大幅に向上し、より迅速かつ確実に意思決定を行うことができます。 エッジ AI の利点は、ロジスティック面と技術面の両方にあります。石油掘削装置などのアクセスが困難な場所では、エッジ AI がリスクの増大を示すパターンを識別し、それに応じて対応して潜在的に危険な状況を防ぐことができます。農業では、機械が環境条件に基づいて自律的に判断できるようにすることで、農家は収穫量を最大化できるようになります。 社会も恩恵を受けるでしょう。ドローンの群れが、複数のセンサーを使って形、音、熱、動きを検知し、生命の兆候を特定しながら、険しい山岳地帯で捜索救助活動を実施できる様子を想像してみてください。 エッジコンピューティングの普及に伴い、人工知能の応用も拡大しています。しかし、エッジ AI が普及するためには、克服すべき技術的なハードルがまだ数多くあります。 限界を超えた障害おそらく、エッジ AI の最大の制限要因は、エッジ デバイスが通常は小型で、計算能力が限られているという事実にあります。そのパフォーマンスは、データセンターや強力なデスクトップ GPU のそれとは程遠いものです。ただし、モデルの削減や量子化などの特殊な AI 技術を使用することで、小型デバイスに適合する限定モデルでも多くの便利な機能を提供できます。 その他の課題は、エッジ コンピューティング プロジェクトがアクセスが困難な場所や遠隔地で実行されることが多いという事実から生じます。これらのデバイスに電力と接続を提供するのは難しい場合があり、これらのデバイスが相互に通信できるように IoT 標準を満たすことは必ずしも簡単ではありません。 3 つ目の課題は、エッジ AI 自体はインターネットへの依存度が限られているものの、ウェアラブルなどの多くの個人用エッジ デバイスは、クラウド接続を必要とするアプリケーションをサポートする必要があり、リスクの要素が生じることです。 しかし、これらの課題は克服できないものではありません。長寿命バッテリー、5G 接続、低電力ハードウェア アーキテクチャなど、さまざまな電源および接続ソリューションが役立ちます。 AIチップの課題エッジ AI プロジェクトが直面する主な障害は、AI チップのコスト、パフォーマンス、電力要件です。一部の産業シナリオでは、関係する IoT デバイスの数によってチップ要件が数十万に達し、プロジェクト コストが急騰する可能性があります。 このような大規模な導入には、コストパフォーマンス比を慎重に評価する必要があり、現在の価格では実現が困難になる可能性があります。これらの AI コンピューティング要素が大幅に改善されるまでは、問題解決能力が限られた小規模モデルしか見られなくなる可能性があります。 教育上の利点の実現もう一つの大きな課題は、これらすべての自律型 AI デバイスをトレーニングする方法を見つけることです。生成型人工知能 (GAI) の最近の開発では、GPT などのシステムがインターネット上で利用可能な非常に大規模なデータセットでトレーニングされるようになりました。これには、データの収集と処理に多大な労力が必要です。エッジでスマートな意思決定を行うには、十分な量のデータのニーズを満たす必要があります。 しかし、GAI の最近の動向をもう一度見てみると、解決策はすでに明らかになっているかもしれません。 1 つのアプローチとしては、生成モデルの力を活用して、提供されたいくつかの例に基づいて大量の合成トレーニング データを生成し、このデータを使用してより小さなモデルをより迅速にトレーニングすることが考えられます。もう 1 つのアプローチ、そしておそらくさらに一歩進んだアプローチは、ライブ トレーニング データ (利用可能な場合) で大規模な生成モデルを直接トレーニングし、それを使用して小規模なエッジ AI モデルをトレーニングすることです。 このアプローチはすでに成果を上げており、GPT-4 などの大規模な基本モデルから学習し、非常によく似た結果を生み出している小規模モデルである Orca 13B にそれが表れています。最近の AI 開発を観察する多くの人々は、小規模で特殊な AI モデルの「カンブリア爆発」の瀬戸際にいると主張しています。これらをエッジ デバイスに組み込むことで、特定のタスクに優れた機能を提供できます。 マシンツーマシン学習より高速な学習を実現するもう 1 つの方法は、相互接続され自己改善する AI エッジ デバイスの艦隊を集中システムから管理することです。多くの場合、実行可能な解決策は、「タスク中」に段階的にトレーニングでき、重要な発見を共有できるモデルを用意することです。 企業や業界全体でベストプラクティスを共有するのと同様に、マシンは行動を導くパターンを特定するのに役立ちます。 インテリジェントな中央組織によって制御される自律マシンの艦隊という概念は、ディストピア SF ストーリーに出てくるようなものに似ているかもしれません。したがって、人工知能に関わるあらゆるものと同様に、動作パラメータを課す必要があります。 それほど遠くない将来、自動化されたエッジ デバイスが相互に学習する機能を備えるようになる可能性は十分にあります。これにより、私たちに代わってよりスマートな意思決定を行えるようになり、業界と社会に変革をもたらすことになります。 |
<<: データ注釈サービスのアウトソーシングによって AI モデルはどのように強化されるのでしょうか?
導入産業革命は一度しか起こらないが、私たちは今、人工知能 (AI) 革命という大きな革命の過程にある...
この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...
COVID-19は顔認識技術の使用にどのような影響を与えるでしょうか? [[374366]] #p#...
マイクロソフトは3月8日、北京時間3月22日午前1時にオンライン新製品発表会を開催することを決定した...
人工知能の急速な発展に伴い、音声認識は多くのデバイスの標準機能になり始めています。音声認識はますます...
現在、人工知能 (AI) システムは反復的で非創造的なタスクを実行するのが得意ですが、スクリプトから...
新しいアプローチにより、機械学習モデルはタスクを学習する際により多くのデータに焦点を当てるようになり...
[[418716]]建築の問題を研究すると、ほぼすべての「新しい」アイデアが、おそらく何十年も前に何...
この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...
大規模モデルのトレーニングと微調整にはビデオ メモリに対する要件が高く、オプティマイザーの状態は主要...
[[341456]]顔スキャンでロック解除、顔スキャンで支払い、顔スキャンでキャンパスに入る......
[51CTO.com からのオリジナル記事] 音声認識は自動音声認識とも呼ばれ、人間の音声に含まれ...
[[343105]] [51CTO.com クイック翻訳] サイバー脅威の複雑さと数は時代とともに進...