PyTorch スキルを向上させる 7 つの実用的なヒント (例付き)

PyTorch スキルを向上させる 7 つの実用的なヒント (例付き)

[[399124]]

PyTorch は、動的ニューラル ネットワーク (if ステートメントや while ループなどの動的制御フローを活用するネットワークなど) による自動差別化を可能にする、非常に柔軟なディープラーニング フレームワークです。また、GPU アクセラレーション、分散トレーニング、さまざまな最適化タスクもサポートしており、さらに多くの簡潔な機能を備えています。

今年 3 月初旬、公式チームは PyTorch バージョン 1.8 をリリースしました。これは、昨年 10 月のバージョン 1.7 リリース以降の 3,000 件を超えるコミットを統合し、コンパイル、コード最適化、科学計算フロントエンド API のアップデートと新機能を提供しました。このバージョンでは AMD ROCm のサポートも追加されている点は注目に値します。

研究者たちは長い間、PyTorchの特性を十分に探求するために、ディープラーニングモデルのトレーニングの使用を高速化する方法、トレーニング後にモデルを保存する方法、マルチカードトレーニングを使用する方法、トレーニング中に学習率を減衰させる方法など、さまざまなヒントも提案してきました。これらのヒントにより、PyTorch の使用効率が多少向上します。

最近、PyTorch の使用に関するヒントに関する投稿「PyTorch の 7 つの実用的なヒント」が Reddit に掲載され、関連する例も提供され、ネットユーザーの間で白熱した議論が巻き起こりました。

PyTorch スキルを向上させる 7 つのヒント

ポスターには、PyTorch スキルの向上に役立つ 7 つのヒントがまとめられています。これらのヒントは、投稿者がよく間違えたり忘れたりする事柄をまとめたものです。さらに、ポスターではColabでのアプリケーション例やビデオによる説明もいくつか紹介されました。

1. デバイス パラメータを使用して、ターゲット デバイス上にテンソルを直接作成します。

2. シーケンシャル レイヤーを使用して、よりクリーンなコードを取得します。

3. レイヤーは nn.Module クラスによって正しく登録されないため、リストに含めないでください。代わりに、リストは Sequential レイヤーに展開された引数として渡される必要があります。

4. PyTorch はディストリビューション用の優れたオブジェクトと関数をいくつか提供していますが、torch.distribution ではそれらが十分に活用されていません。

5. 2 つのエポック間でテンソル インデックスを保存するときは、メモリ リークを避けるために必ず .detach() を呼び出します。

6. torch.cuda.empty_cache() を使用して GPU キャッシュをクリアします。これは、ノートブックを使用しているときに大きなモデルを削除して再作成する場合に便利です。

7. テストを開始する前に、model.eval() を呼び出すことを忘れないでください。

次の 2 つの例は、ヒント 6 とヒント 7 のコード サンプルです。

ヒント 6: GPU からモデル インスタンスを削除します。

ヒント 7: テストする前に、eval() を呼び出します。

ユーザーレビュー

ネットユーザーも、上記の 7 つの PyTorch 使用のヒントについて独自のコメントを寄せています。あるユーザーは次のようにコメントしました。「何年も PyTorch を使ってきましたが、今でも eval() を呼び出すのを忘れてしまいます。」

別のユーザーはこう言いました。「なぜ nn.Sequential を使わないのですか? 研究目的では、特定のレイヤーの状況をチェックする必要があります。たとえば、重み、勾配、アクティベーションをチェックしたり、条件付きでコードを実行したりします。これらの操作を nn.ModuleList で実行すると非常に直感的です。すべてのレイヤーを配列の要素のように扱い、split を使用して配列インデックス [i:j] を分割するだけなので、こちらの方が優れています。」

別のユーザーはこう言っています。「共有していただきありがとうございます。とても役立ちそうです。ロジスティック回帰、決定木など、仕事でよく使用する一般的なモデルを再現することで、PyTorch についてさらに学んでいます。(ただし、DL を使用した例はまだありません。) PyTorch の ML に関する優れたリソースをご存知ですか。たとえば、sklearn で何ができるかなどです。」

最後に、投稿者は、これらの 7 つのヒントは自分がよく間違えたり忘れたりするものであると強調しました。ただし、これらのヒントはあなたにも当てはまるかもしれません。

Colab の例のアドレス: https://colab.research.google.com/drive/15vGzXs_ueoKL0jYpC4gr9BCTfWt935DC?usp=sharing

<<:  自動化プロジェクトの成功は、ビジネスとITの高度な連携にかかっています。

>>:  中国の機械工、黄永剛氏のチームの新しい研究:脳への光遺伝学インプラントがマウスを一瞬でゲイの友達に変える

ブログ    
ブログ    
ブログ    

推薦する

人工知能は世界を支配するのでしょうか?

技術が急速に進歩する時代において、人工知能 (AI) が最終的に世界を支配するかどうかという差し迫っ...

...

技術者でなくても、クラウド コンピューティング、ビッグ データ、人工知能を理解することができます。

今日は、クラウド コンピューティング、ビッグ データ、人工知能の 3 つのトピックについてお話しした...

人工知能のセキュリティ:将来の戦争のリスクと課題

人工知能技術の発展に伴い、人工知能はあらゆる分野で広く利用されるようになり、人類社会に広範かつ深遠な...

地図やGPSは信頼できないが、それは問題ではない:カリフォルニア大学バークレー校のロボットが未知の環境で3キロメートル以上を移動

ほとんどのロボットの移動方法は、ほとんどの人間の移動方法とは大きく異なります。ロボットは、環境を包括...

人工知能はビッグデータの保存と管理の効率をどのように向上させるのでしょうか?

ビッグデータのソースが多数存在し、企業が利用できるデータの量も増加しているため、ストレージ管理者にと...

...

優れたビジネス機械学習のユースケース 5 つ

ビッグデータと機械学習を組み合わせることで、ビジネスの競争優位性を獲得するために必要な、すでに保有し...

多言語自然言語処理 (NLP) で言語の壁を打ち破ります!

自然言語処理は言語の壁を打ち破り、人間と機械間の相互作用とコミュニケーションを強化します。自然言語処...

...

人工知能は防衛システムをどのように変えるのでしょうか?

この記事では、人工知能が防衛システムにどのように革命をもたらし、より安全な未来を実現できるかを探りま...

なぜAIは東京オリンピックでバレーボールの試合を無料で観戦できるのか?

[[416801]]ビッグデータダイジェスト制作出典: Wired 8月8日の夜、第32回夏季オリ...

人工知能がやって来ます。準備はできていますか?

ちょうど2年前、大学に入学したときに一度だけ行ったことがあります。その時は、まず入り口の機械で番号を...

AI の可能性を最大限に引き出す: 企業での導入を成功させる 5 つの鍵

ビジネスとテクノロジーに関心のある人なら誰でも、AI がすでに業界や日常生活に大きな変化をもたらして...