GoogleはAIチップに出産を学習させ、次世代のTPUはAI自身によって設計される

GoogleはAIチップに出産を学習させ、次世代のTPUはAI自身によって設計される

[[405016]]

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

AIチップの設計はどれくらい難しいのでしょうか?

こう言いましょう。囲碁の複雑さは 10360 ですが、チップは 102500 です。ちょっと考えてみましょう...

△囲碁の複雑さ

一般的に、エンジニアがチップを設計するには数週間から数か月かかります。

今、AI による生産性向上がここにあります!

AIはわずか6時間で独自にチップを設計しました。

最近、この Google の研究が Nature 誌に掲載されました。

レイアウト時間が数倍短縮

小さなチップには数十億個のトランジスタが含まれており、それらで構成される数千万個の論理ゲートが標準ユニットであり、マクロブロックと呼ばれる数千個のストレージブロックもあります。

それらの位置、つまりフロアプランを決定することは、チップ設計にとって非常に重要です。

これは配線方法に直接関係しており、チップの処理速度と電力効率に影響します。

ただし、マクロブロックの配置手順だけでも非常に時間がかかり、標準セル用のスペースを増やすために各反復に数日または数週間かかります。

△人間が設計したチップとAIが設計したチップの平面図(灰色のブロックはマクロブロック)

レイアウト全体を完成させるには、数週間から数か月かかることもあります。

現在、Google の研究者は、一般化できるチップレイアウト方法を提案しています。

深層強化学習に基づいて以前のレイアウトを学習し、新しいデザインを生成することができます。全体的なアーキテクチャは次のとおりです。

AIモデルは10万個のチップレイアウトを学習する必要があるため、速度を確保するために、研究者らは、配線の長さと配線の混雑度のおおよそのコスト関数に基づいて計算される報酬メカニズムを設計しました。

具体的には、マクロと標準セルをフラットなキャンバスにマッピングして、数百万から数十億のノードを持つ「チップ ネットリスト」を形成する必要があります。

次に、AI モデルは電力、パフォーマンス、面積 (PPA) などの要素を最適化し、確率分布を出力します。

次の図は、事前トレーニング戦略に基づくゼロサンプル生成と微調整の効果を示しています。各小さな四角形はマクロブロックを表しています。事前トレーニング戦略では、標準ユニットを配置するためのスペースが中央に残されています。

Google の新しいアプローチでは、他の方法と比較して設計時間が大幅に短縮され、パフォーマンスが最適化されたレイアウトを実現するのに6 時間もかかりません

Google: 効果は良好で使用済み

研究チームは、さまざまな戦略におけるレイアウト効果を視覚化しました。図から、事前トレーニング戦略を微調整した結果が、ゼロサンプル生成よりも大幅に優れていることがわかります。

さらに、異なるトレーニング期間の効果を比較すると、 2〜12時間のトレーニングの場合、事前トレーニング戦略はゼロサンプル生成よりも優れていることがわかります。

研究者たちは、さまざまなサイズのデータ​​セットでテストを行った結果、データセットのサイズが大きくなるにつれて、生成されるレイアウトの品質と収束時間の結果が向上することを発見しました。

グーグルはこう言った。

このアプローチは、あらゆるタイプのチップに適用できます。

現在、次世代の Google TPU(アクセラレータ チップ)の製造に使用されています。

<<:  業界アプリケーション: ドローンに正確な測位技術を提供するにはどうすればよいでしょうか?

>>:  ヘルスケアにおける人工知能の応用

ブログ    
ブログ    
ブログ    

推薦する

ワシントンポスト紙の李開復氏のコラム:お金を与えることでAI失業危機は解決するのか?シリコンバレーの大物は世間知らずすぎる

AI革命が到来し、それは最良の時代になるかもしれないし、最悪の時代になるかもしれない。それが良いこと...

利便性を超えて:スマートホームは信頼できるのか?

映画鑑賞の夜に快適なアームチェアに腰を下ろすと、プロジェクターが起動し、スマートライトが自動的に暗く...

自動運転は自動車産業の未来だが、これはドライバーが手を完全に自由にできることを意味するものではない。

自動運転車は未来を象徴しているが、運転手が全てを完全に機械に任せることはできないかもしれない。おそら...

...

Gym Anytradingに基づく強化学習の簡単な例

強化学習 (RL) は近年、アルゴリズム取引の分野で大きな注目を集めています。強化学習アルゴリズムは...

...

AI業界は依然として寒い冬に:資金調達規模はピーク時の半分以下、上場ブームは倒産の波を伴う

[[351301]]資本の冬を経験した後、疫病のブラックスワンが次々と起こり、AI初期に蓄積された非...

「AI+セキュリティ」はホームセキュリティの新たなトーンとなり、過小評価されることはない

家庭の安全に対する国民の意識が高まり、社会環境の動向が変化する現状において、家庭の安全は人々の日常的...

マルチエージェント強化学習の大規模モデルに関する予備的研究

1. 大規模マルチエージェント意思決定モデルの課題現実世界における多くの実際的な問題は、複数のエージ...

中学校の知識を使って機械学習が何をしているのかを理解する方法

[[333000]]序文Baidu 百科事典で「機械学習」を検索すると、私が決して到達できないレベル...

Tmall のプログラマーがハイエンド アルゴリズムを使用して女の子を探す

問題は、アリ・タブロイド紙の公開記事によると: [[93064]] #p#これは本当の、そして少し悲...

...

7BモデルはGPT4-Vを超えます! HKUST などが「グラフ推論質問回答」データセットを公開 GITQA: 視覚的なグラフは推論能力を向上させることができます

グラフ ニューラル ネットワーク (GNN) は、グラフの構造情報を推論に活用するのに優れていますが...

DeepMindとハーバード大学がAI「モルモット」を開発:餌探しからバッティングまでニューラルネットワークの謎を探る

マウスを研究するのと同じ方法で AI を研究できるでしょうか?多分。 ICLR 2020 Spotl...