AIとディープラーニングはもはやハイエンドのビデオ監視アプリケーションに限定されたものではない

AIとディープラーニングはもはやハイエンドのビデオ監視アプリケーションに限定されたものではない

[[408248]]

最近、ディープラーニング AI を活用したビデオ監視プロジェクトに携わったことがなければ、このテクノロジーは高価すぎて、ハイエンドのアプリケーションにしか使用できないと思うかもしれません。

ディープラーニング AI を搭載した手頃な価格の新世代カメラの導入により、これはもはや当てはまりません。しかし、人工ニューラル ネットワークや機械学習など、このテクノロジに関連する用語は、このテクノロジが提供できる機能が、ほとんどのエンド ユーザーがビデオ監視ソリューションから最大限のメリットを得るために必要とするものをはるかに超えているという印象を与えている可能性があります。

誤検知を排除する

しかし、そうではありません。ほとんどの場合、電子セキュリティ業界を何十年も悩ませてきた誤報問題を解決するには、AI カメラが必要です。

つまり、ディープラーニング AI ビデオ分析では、ビデオのノイズ、揺れる木々、動く雲、動物などを無視します。これらの条件に対処するようにトレーニングされていないため、標準的なモーション検出技術やセンサーを使用してアクティビティを検出すると、誤検知の原因となることがよくあります。

このディープラーニング AI ベースのビデオ分析のパフォーマンスが向上すると、制御室のオペレーターとセキュリティ担当者は、誤報に時間と労力を浪費するのではなく、実際のインシデントや緊急事態への対応に集中できるようになります。ディープラーニングは、極めて高い精度に加え、人物の年齢や性別、眼鏡や帽子をかぶっているか、バッグを持っているかといった特定の特徴や属性を検索することを可能にします。

インストールと使用が簡単

実際、AI カメラにはすべてのインテリジェンスがすでに組み込まれているため、ディープラーニング AI のインストール、設定、使用は複雑ではありません。その結果、システム インテグレーターとインストーラーは、ほぼすべてのビデオ監視プロジェクトの一環としてこのテクノロジを最大限に活用できるようになります。

AI はすぐに使用できる状態になっているため、エンドユーザーの運用要件に合わせてカスタマイズできる機会はあるものの、ユーザーが AI の仕組みについて技術的に深く理解する必要はありません。

まずはディープラーニングから始めましょう。これは機械学習の一部であり、大量の例に基づいてタスクを実行するように機械をトレーニングすることで人工知能を実現する方法です。これを実現するために、ディープラーニングでは、本質的には人間の脳にヒントを得た数学モデルである多層または深層人工ニューラル ネットワークを使用します。これらの深度により、生のビデオ内のオブジェクトやイベントを非常に高い精度で識別するなど、複雑な問題を解決するのに適しています。

たとえば、人の性別を正しく判断できるようにするには、ハンファ テックウィンの研究開発エンジニアが、トレーニング段階で適切に選択された数百万の顔のデータベースを使用し、それぞれに既知の本当の性別のラベルを付けるディープラーニング ネットワークを設計、トレーニング、検証する必要があります。弊社のエンジニアによる数日間のトレーニングの後、ニューラル ネットワークは、精度が約 98% となり、人間が同じことを行う能力とほぼ同じで、使用できる状態になります。

ディープラーニング AI テクノロジーは、従来のビデオ分析よりもはるかに優れたパフォーマンスを発揮します。後者は通常、動きの検出に基づいているため、静止した物体(駐車中の車両など)を検出したり、ビデオのノイズ(ヘッドライトからの光害や動く影など)を処理したりするほど洗練されておらず、これらはすべて誤報の原因となります。

分析のパフォーマンスは、動きが速い環境や非常に忙しい環境でも同様に印象的で、証拠のフォレンジック検索を改善し、調査をスピードアップします。

これらの理由などから、ほとんどのアプリケーション、特に誤検出の影響が最も大きいアプリケーションでは、ディープラーニング AI が従来のビデオ分析を徐々に置き換えることはおそらく避けられないでしょう。たとえば、小売業者は年齢や性別などのビジネス インテリジェンスを取得して分析できるため、顧客の人口統計を詳細なレベルで分析し、その過程で顧客の行動や購入パターンをより深く理解できるようになります。

注目すべきは、ディープラーニング AI がマスク検出、距離測定、占有監視アプリケーションの中核を担い、過去 1 年ほどにわたって貴重な貢献を果たしてきたことです。

<<:  人工知能の分野は大きな需要があり、金融​​人材の将来性は有望である

>>:  マイクロソフトはWindows 11アプリストアの検索アルゴリズムを改善し、ブラウザウェブアプリのインストールをサポートする予定

ブログ    
ブログ    

推薦する

ACM 発表: 2017 年チューリング賞はチップ業界の巨匠 2 名に授与される

米国計算機協会(ACM)は、2017年のチューリング賞を、チップ業界の巨匠2名、スタンフォード大学元...

GPT-4 Turboがリリースされたが、人気が高すぎて翌日2時間ダウンした。

11月7日、北米の人工知能企業OpenAIの開発者会議が世界のテクノロジーコミュニティの注目を集め...

...

...

Agent4Recが登場!大規模なモデルエージェントは、実際のユーザーインタラクション動作をシミュレートする推奨システムシミュレーターを構成します。

推奨システムの分野では、モデルのオンラインとオフラインのパフォーマンスに大きなギャップがあるという問...

大学受験出願関連アプリは会員料金が高く、AIアプリは信頼できない

6月26日のニュース:大学入試願書の記入は毎年大学入試後の重要なステップであり、受験生や保護者が最も...

Ant Group は、動画の著作権侵害検出用に 16 万本の動画ペアと 28 万本のクリップペアからなる大規模なデータセットを公開しました。

従来の著作権保護業界は、時間がかかり、労働集約的で、コストがかかります。膨大な量のコンテンツを完全に...

次世代産業用ロボットに対する人工知能(AI)の影響

[[389728]]大量生産される製品に対する需要が高まるにつれ、製品には高品質で信頼性が高く、より...

1990年代生まれの中国人教授が、1年間でネイチャー誌に3本の論文を発表した。最初の量子ニューラルネットワークQuantumFlowはオープンソースです

[[432543]]ニューラル ネットワークは、現在のコンピューティング アプリケーションで最も急速...

ByteDanceは、従来の4倍の速度を誇る高性能トレーニングおよび推論エンジンLightSeqを発表した。

Transformer モデルは、Google チームが 2017 年に発表した論文「Attent...

これらの 8 冊の本を読んでいないのに、コンピューター ビジョンの分野で働いていると言える勇気がありますか?

コンピューター ビジョンは、写真やビデオなどのデジタル画像の側面に焦点を当てた人工知能のサブフィール...

AIやIoT技術を活用した企業が職場復帰する際に考慮すべきこと

新型コロナウイルス感染症のパンデミックにより、社会の多くの分野でデジタル変革が加速し、人工知能ツール...

ジェネレーティブAIの力を最大限に引き出す方法

生成 AI により、機械はコンテンツを作成し、人間の行動を模倣し、創造的な仕事に貢献できるようになり...

...

戻れる幼少時代!快手が「子供になる」特殊効果をリリース

「子供時代に戻りたい。子供の頃はよく食べて、よく寝て、あまり考えないことが好きだった」。山西省大同市...