毎日のアルゴリズム: 有効な三角形の数

毎日のアルゴリズム: 有効な三角形の数

[[429712]]

この記事はWeChatの公開アカウント「3分でフロントエンドを学ぶ」から転載したもので、著者はsisterAnです。この記事を転載する場合は、「3分で学ぶフロントエンド」公式アカウントまでご連絡ください。

負でない整数を含む配列が与えられた場合、三角形の 3 辺を形成できる 3 つ組の数を数えることがタスクです。

例1:

  1. 入力: [2,2,3,4]
  2. 出力: 3
  3. 説明する:
  4. 有効な組み合わせは次のとおりです。
  5. 2、3、4(最初の2つを使用)
  6. 2、3、4(2番目の2を使用)
  7. 2,2,3

知らせ:

  • 配列の長さは 1000 を超えることはできません。
  • 配列内の整数の範囲は[0, 1000]です。

解決策: ソート + ダブルポインタ

三角形のどの2辺の合計も3番目の辺より大きく、どの2辺の差も3番目の辺より小さいことがわかっています。3辺の長さを小さい方から順にa、b、cとすると、これらの3辺はa + b > cの場合にのみ三角形を形成できます。

解決策: 最初に配列をソートし、次に最長のエッジを固定し、ダブル ポインター メソッドを使用して残りのエッジを決定します。

nums[nums.length - 1]を最長辺nums[k]とする(k = nums.length - 1)

nums[i]を最短辺とし、nums[nums.length - 2]を2番目の数nums[j](j = nums.length - 2)とする。

nums[i] + nums[j]がnums[k]より大きいかどうかを判定します。

  • nums[i] + nums[j] > nums[k] の場合、次のようになります。
  1. 数値[i+1] + 数値[j] > 数値[k]
  2. 数値[i+2] + 数値[j] > 数値[k]
  3. ...
  4. 数値[j-1] + 数値[j] > 数値[k]

そして、ji に三角形を形成できる三つ組の数が追加され、j が一つ前の位置 (j--) に移動し、次のラウンドの判定が続行されます。

  • nums[i] + nums[j] <= nums[k]の場合、lは1つ後ろに移動し(numsは昇順)、判定を続けます。

コード実装:

  1. triangleNumber = function (nums) {とします。
  2. if (!nums || nums.length < 3) 0を返す
  3. カウントを 0 にする
  4. // 選別
  5. nums.sort((a, b) => a - b)
  6. (k = nums.length - 1; k > 1; k --)の場合{  
  7. i = 0、j = k - 1とする
  8. i < j の場合{
  9. if(nums[i] + nums[j] > nums[k]){
  10. カウント+= j - i
  11. じ --  
  12. }それ以外{
  13. 私は++
  14. }
  15. }
  16. }
  17. 戻る カウント 
  18. }

複雑性分析:

  • 時間計算量: O(n^2^)
  • 空間計算量: O(n)

知らせ:

Array.prototype.sort() に関しては、ES 仕様では特定のアルゴリズムは指定されていません。バージョン 7.0 より前の V8 エンジンでは、配列の長さが 10 未満の場合、Array.prototype.sort() は挿入ソートを使用し、それ以外の場合はクイックソートを使用します。

クイックソートは安定したソートアルゴリズムではないため、V8 エンジンバージョン 7.0 以降では廃止されました。最悪の場合、時間計算量は O(n2) に低下します。

代わりに、ハイブリッド ソート アルゴリズムである TimSort が使用されます。

この機能アルゴリズムは、もともと Python 言語で使用されていました。厳密に言えば、上記の 10 個のソート アルゴリズムのいずれにも属さず、ハイブリッド ソート アルゴリズムです。

データ量の少ないサブ配列では挿入ソートを使用し、次にマージソートを使用して順序付けられたサブ配列をマージしてソートします。時間の計算量は O(nlogn) です。

リートコード: https://leetcode-cn.com/problems/valid-triangle-number/solution/teng-xun-leetcode611you-xiao-san-jiao-xing-de-ge-s/

<<:  すべてのビジネスデータを使用しても、AI に完全に入力することはできませんか?この小さなサンプル学習キットをお試しください

>>:  科学者たちは人間のように「考える」ことができる人工知能を開発している

ブログ    
ブログ    

推薦する

...

人工知能の時代において、中国語と英語のどちらがAIの母国語になるのでしょうか?

人工知能は現在非常に人気の高い技術であり、世界中の国々が研究に資金と人材を投入しています。人工知能を...

商品受け取り時の顔認証システムを小学生が“クラック”!鳳超が緊急オフラインに

[[279460]]最近、「#小学生がアイテム拾いの顔認証のバグを発見#」という話題が注目を集めてい...

...

自動運転タクシー市場が急成長中。最初にこの市場を活用できるのは、Google、Uber、それともTeslaのどれでしょうか?

ウェイモは世界クラスのレベル4自動運転車工場を建設し、テスラは「世界クラスのチップ」を発表し、ウーバ...

Python、Java、C++がすべて含まれています。このGitHubプロジェクトは、複数の言語で古典的なアルゴリズムを実装しています。

古典的なデータ構造とアルゴリズムをいくつ知っていますか?大企業で面接を受けてみませんか?アルゴリズム...

人工知能も「ペンを手に取る」とき、人間に残される領域はどれほどになるのでしょうか?

「暗闇が私たちの光を引き立てる/そして私は漠然とした幻想しか見ることができない/孤独の瞬間のあなた...

マスク氏の Grok 大型モデルがプレイ可能になりました!彼の口は彼自身と同じくらい悪い。

友達に大きなサプライズ!マスク氏は突然、Grokの大型モデルを大量の有料ユーザーに開放すると発表した...

ドローン配送がレイアウトブームを巻き起こす、普及するには2つのポイントに注意が必要

滴滴出行が昨年11月にドローンによる食品配達サービスを検討すると発表し、美団も最近ドローン配達隊に加...

学術界の巨人たちのブラックテクノロジー:人工知能のダークマターについて聞いたことがありますか?

北京大学の公式サイトの最新情報によると、元UCLA(カリフォルニア大学ロサンゼルス校)教授の朱松春...

快手は快易のビッグモデルの助けを借りてコメントエリアでのインテリジェントな返信を実現する「AI小快」をテスト中

快手は10月26日、「AI小快」アカウントの内部テストを正式に開始し、ショートビデオコメントエリアで...

業界の洞察 | スマート シティと省エネ通信インフラ

スマートグリッドはエネルギー配給と通信ネットワークに革命をもたらす以下では、スマートグリッドの主な特...

顔認識の応用シナリオは拡大し続けています。顔スキャンは便利で安全である必要があります。

[[341456]]顔スキャンでロック解除、顔スキャンで支払い、顔スキャンでキャンパスに入る......

人工知能とビッグデータが私たちの生活に何をもたらすかご存知ですか?

「ビッグデータ」と「人工知能」はテクノロジー業界で最も価値のある分野となっている。Apple、Go...