次世代の AI 人材をどう育成するか?

次世代の AI 人材をどう育成するか?

AI 人材とプロジェクト パイプラインを構築するには、教育的価値だけでなく技術的価値も必要です。そのためには、世界的に著名な科学顧問が率いる AI の卓越した研究センターが必要です。

政府や草の根の取り組みが関与すると、より強力な AI エコシステムが生まれます。

AIエコシステムはバリューネットワークとして実現され、利害関係者のAIへの参入基準を再設計し、参加への道筋を提供します。

経済成長の触媒としての AI のメリットは、世界中の都市間で不均等に分配されています。したがって、その才能も同様です。ボストン、シリコンバレー、トロントなどとして知られる AI ハブは、米国の中心部にも、世界中の新興市場やフロンティア市場にも存在しません。

これらの AI センターは、世界有数の教育機関の支援を受けており、世界中から優秀な人材を集める科学顧問によって運営されています。このような AI エコシステムがなければ、次世代の AI 人材を育成することは不可能です。

AIの開発においては、技術やアルゴリズムがコモディティ化している一方で、AIの問題に対する解決策を生み出すことができる熟練した人材が最も重要な要素となります。 AI を扱える労働者の世代全体が必要になるでしょう。この世代の才能は、航空宇宙、防衛、教育、住宅、輸送、公共の安全、サプライチェーン、製造業、そして国家安全保障にとって極めて重要な他の多くの産業における国家の利益を支えることになるでしょう。

次世代のAI人材を今すぐサポート

ジョン・F・ケネディが言ったように、太陽が輝いている間に屋根を修理しましょう。すべての兆候は、アメリカの AI 成果の明るい未来を示しています。

同時に、この主導的地位を維持するために、今こそ次世代の AI 人材を育成すべき時です。スタンフォード大学の2022年人工知能指数レポートによると、出版物、資本投資、会議引用、純新規投資企業、特許承認に関しては、米国は人工知能の世界的リーダーです。

米国を AI エコシステムの北極星とすれば、新興のテクノロジーハブがローカルエコシステムを開発する機会が生まれます。スタンフォード大学の2022年人工知能指数レポートによると、2021年に米国政府が国防総省のAI契約に最も多く支出し、国立科学財団(NSF)の支出が最も少なかった。

政府の役割

各国政府は草の根の AI エコシステムに貢献する必要があります。地方自治体から連邦政策まで、AI エコシステムのすべての関係者が価値ネットワークを構築しています。 AI エコシステムは、それぞれ異なる目標を持つ 8 つの利害関係者で構成されています。これらの利害関係者が目標を達成するためには、政府の支援が必要です。

政府の具体的な役割は、大学院レベルだけでなく、K-12 プログラムでも AI の学位と教育を直ちに認めることです。もし政府の教育省が医学、法律、教育の学位を認めなかったらどうなるでしょうか? 教育制度は機能しないでしょう。しかし逆説的に、教育部門はそのような AI 学位を特定するための内部専門知識を構築する必要があります。

AI エコシステムと次世代の AI 人材を育成するアプローチは切り離すことはできません。 AI ワークショップ、認定資格、ブートキャンプには教育的価値がなく、実践者レベルのスキルを養成するものではありません。

AI 人材育成や AI 学位には、なぜ医学や法律の学位と同じ厳しさや基準が与えられないのでしょうか?

これは、AI 学位の標準化と、草の根組織が主導する AI 卓越センターの支援から始める必要があります。次世代の AI 人材の育成に関心を持つ起業家や利害関係者として、私たちは政府がローカライズされた AI エコシステムを構築するための行動を起こすのを待ちきれません。

地元の学術界にすでに存在する知識基盤を中心に構築する必要があります。 AI 教育を効果的にするには、8 つのステークホルダー モデルを通じて関与するコミュニティから卓越したセンターが生まれなければなりません。これは、AI 教育に価値をもたらすボトムアップのアプローチです。

地域のエコシステムにおけるギャップを、付加価値を生み出す起業の機会として特定するための行動が今求められています。したがって、各地域の技術コミュニティと学術コミュニティが協力して、独自の AI 卓越センターを設立する必要があります。

しかし、これは、AI テクノロジーの能力について十分な知識を持ち、その能力を信じているすべての関係者と一体となって行う必要があります。これは、業界と協力して信頼を構築し、AI で解決できる地域の問題に対処することを意味します。

教育がなければ、私たちは人工知能の分野をリードすることはできません。だからこそ、その分野の学術組織に価値をもたらすことが重要なのです。​

<<:  マシンビジョンにはどのようなハードウェアが含まれていますか?

>>:  AI導入における主な障壁とその解決策

ブログ    

推薦する

はっきり言って、Alipay の年間請求額はほんの始まりに過ぎません。AI があらゆる場所に存在する未来において、プライバシーはどこにあるのでしょうか?

一昨日の午後、大隊長の友人の輪にはアリペイの「私の年間キーワード」が頻繁に送られてきた。画像出典: ...

...

人工知能の応用シナリオは増加しており、徐々にさまざまな業界で必要なスキルになりつつあります。

[[250982]] 2015年以来、人工知能の概念は初めて提案されて以来、市場から高く評価されて...

未来はここにあります。人工知能がもたらすリスクをどう軽減できるでしょうか?

この新しい時代に成功するには、企業のセキュリティは AI がもたらすリスクを軽減し、AI がもたらす...

直接的な選好最適化戦略を用いたミストラル7bモデルの微調整

翻訳者|朱 仙中レビュー | Chonglou導入通常、事前トレーニング済みの大規模言語モデル (L...

ブロックチェーン技術の 6 つのコア アルゴリズム。6 つのコア アルゴリズムを理解すれば、ブロックチェーンの専門家になれます。

最近、暗号通貨が「混乱期」を経験した後、ブロックチェーンは再び人気を集め、各方面から大きな注目と注目...

大規模データストレージソリューションの構築: MongoDB の水平拡張の検討

MongoDB は、大規模なデータ ストレージ ソリューションの構築に適した NoSQL データベー...

実践編 | アポロレーンチェンジの詳しい説明

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

私が嫌いな人工知能

以前は、機械学習に少しイライラしていました。一方では、メディアやトレーニング機関が機械学習を汎用人工...

...

日本のメディアは、監視と保護に加えて感染症の予防にも役立つ鳥類識別AIの中国での推進に注目している。

日本のメディアZDNETは6月29日、中国が全国規模で鳥類識別AIの普及を推進しているとの記事を掲載...

世界主要7カ国のAI戦略を総ざらい

21 世紀が近づくにつれ、各国の成功または失敗はもはや国民と政府指導者だけに依存するものではなくなり...

北京大学とテンセントは、デザイナーと同じくらいクリエイティブなテキストロゴ生成モデルを提案した。

テキスト ロゴのデザインはデザイナーの創造性と経験に大きく依存しますが、その中でも各テキスト要素のレ...

無人経済が新たな機会をもたらす

[[385322]]春節が過ぎ、広州のアパレル工場は「労働者の採用難」という問題に直面した。広州服装...

決定木からランダムフォレストへ: ツリーベースアルゴリズムの原理と実装

この記事では、決定木の数学的詳細(およびさまざまな Python の例)とその長所と短所について説明...