AIの成功には適切なデータアーキテクチャが必要

AIの成功には適切なデータアーキテクチャが必要

人工知能 (AI) を習得したいと考えている企業にとって、AI はコストを節約し、競争上の優位性を獲得し、将来のビジネス戦場で足がかりを得ることを約束します。しかし、AI 導入のペースは上がり続けているものの、投資額は収益に比例しないことがよくあります。 AI で成功するには、適切なデータ アーキテクチャなど、重要な要素が数多くあります。

現在、AI イニシアチブのうち、組織によって実稼働環境に広く導入されているのはわずか 26% です。残念ながら、これは多くの企業が実際の ROI が得られないまま AI 導入に多くの時間を費やしていることを意味します。

すべての企業はテクノロジー企業のように運営する必要がある

同時に、すべての企業が先頭に立つためにテクノロジー企業のように行動しなければならない世界では、ビジネスの成長のためにデータを活用するよう、テクノロジー チーム、エンジニアリング、IT リーダーにプレッシャーが高まっています。特にクラウド ストレージの支出が増加するにつれて、企業は効率性を向上させ、保存コストが高いデータの ROI を最大化したいと考えています。しかし残念なことに、彼らには時間が足りませんでした。

迅速な結果を求めるニーズを満たすには、明確な目標なしにマッピング データ アーキテクチャを進めることはもはや不可能です。テクノロジーリーダーは、AI を主な目標としてデータ アーキテクチャを構築する必要があります。

そうしないと、後でまた戻って修正することになります。今日のビジネスでは、データ アーキテクチャは明確な成果を目指すべきであり、その結果にはエンド ユーザーに明確なメリットをもたらす AI アプリケーションが含まれる必要があります。これは将来あなたのビジネスを成功させるための鍵となります。

成功するデータアーキテクチャの3つの重要な要素

いくつかの基本原則は、ROI を実現する AI アプリケーションをサポートするデータ アーキテクチャの設計に役立ちます。データを構造化、フォーマット、整理する際には、次のガイドを使用して自分自身をチェックしてください。

目標に向かって努力する

データ アーキテクチャを構築および開発する場合、常にビジネス成果に重点を置くことが最も基本的なルールです。特に、企業の当面の目標を検討し、それに応じてデータ戦略を調整することをお勧めします。

たとえば、年末までに 3,000 万ドルの収益を達成することがビジネス戦略である場合、その目標を達成するためにデータをどのように活用するかを検討します。より重要な目標をより小さな目標に分割し、それに向かって取り組みます。

価値実現までの時間を短縮する設計

明確な目標を設定することが重要ですが、最終的なソリューションは常に変化するビジネス ニーズに適応できるほど俊敏である必要があります。たとえば、小規模なプロジェクトがマルチチャネル プロジェクトに成長する可能性があるため、構築時にこれを考慮する必要があります。固定されたモデリングと固定されたルールは、より多くの作業を生み出すだけです。

設計されるアーキテクチャは、データの可用性の向上に対応し、そのデータを活用して企業の最新の目標を達成できるものでなければなりません。可能な限り自動化します。これにより、データ戦略を迅速かつ反復的に活用し、貴重なビジネスへの影響を生み出すことができます。

たとえば、毎月レポートを提出する必要があることがわかっている場合は、最初からプロセスを自動化します。この方法であれば、最初の 1 か月はこのプロセスに少しだけ時間を費やすことになります。その結果生じる影響は永続的かつ肯定的なものとなるでしょう。

成功をテストする方法を知る

軌道に乗るためには、データ アーキテクチャが効果的に機能しているかどうかを把握することが重要です。データ アーキテクチャは、AI 操作をサポートし、企業内のすべての従業員に使用可能で関連性の高いデータを提供できる場合に機能します。これらに注意を払うことで、データ戦略が目的と将来に適合していることを確認できます。

テクノロジーが進歩し続ける中、企業はそれに追いつかなければ取り残されてしまいます。これは、技術リーダーがチームとのつながりを維持し、チームが役員会議室に新たなイノベーションを持ち込むことを可能にすることを意味します。


<<:  教師なし学習のための最も重要な12のアルゴリズムとその使用例

>>:  オープンソース!香港中文大学、MIT、復旦大学が初のRNA基礎モデルを提案

ブログ    
ブログ    
ブログ    
ブログ    
ブログ    

推薦する

中国AIGC広告・マーケティング業界パノラマレポート:5つの大きな変化と4つの大きな影響、生成AIにより「1人」のための広告作成が可能に

インターネット トラフィックの配当が薄れるにつれ、広告およびマーケティング業界は既存の市場シェアをめ...

ビッグモデル実装の最後の一歩: ビッグモデル評価の 111 ページに及ぶ包括的なレビュー

現在、ビッグモデルは強力な機能と無限の可能性で新たな技術革命をリードしています。多くのテクノロジー大...

アリババがAIを使ってカップルをテスト:ルー・ハンとグアン・シャオトンのテストスコアは笑える

近年、人工知能技術の発展は急速ですが、敷居が高すぎるという人も多くいます。AI技術に関する報道を見る...

速報です! OpenAIがByteDanceアカウントを禁止!コンテンツ生成のための GPT の不正使用に関する内部告発

ノアが編集海外メディアのザ・ヴァージは北京時間今朝未明、生成AIをめぐる熾烈な競争の中で、バイトダン...

ChatGPTのメタバージョンが登場: Llama 2がサポートされ、Bing検索に接続され、ザッカーバーグがライブでデモを実施

今朝早く、毎年恒例の Meta Connect カンファレンスで、AI に焦点を当てた一連の発表が行...

人工知能は非常に人気があります。PULSE は低品質のモザイク画像を保存し、数秒で高解像度の画像に変換できます。

[51CTO.com オリジナル記事] モザイクとはどういう意味ですか?従来のモザイクは、主に映画...

北京市、企業のコンピューティングパワー使用コストを削減するためのAIコンピューティングバウチャー実施計画を発表

10月11日、北京市経済情報化局は「人工知能コンピューティングパワーバウチャー実施計画(2023~2...

スマートホームデバイスにおける ML と IoT の融合

人工知能は定期的に盛んに研究されている技術です。世界中の研究者が、AI の応用と実装をより迅速かつ効...

CNN の弱点を見つけ、MNIST の「ルーチン」に注意する

[[191828]] CNN は現在非常に人気のあるモデルです。多くの画像検索問題において、CNN ...

...

AIイノベーションの解放:自然言語処理技術とアプリケーション

1. はじめに自然言語処理(NLP)技術は人工知能の分野で重要な部分を占めており、その開発と応用は私...

...

...

OpenAI が ChatGPT にマルチモーダル入力機能を追加しました。ご存知ですか?

OpenAIのCEO、サム・アルトマン氏は昨夜Twitterで、ChatGPTに音声と画像の機能が...

...