NYU の具現化知能における新たな進歩: 視覚的なフィードバックで缶を開ける方法を学習し、タスクの成功率が 135% 向上、LeCun 氏はそれを好意的に評価

NYU の具現化知能における新たな進歩: 視覚的なフィードバックで缶を開ける方法を学習し、タスクの成功率が 135% 向上、LeCun 氏はそれを好意的に評価

ロボットがペンチで簡単にワイヤーを切る様子をご覧ください。

あっという間に鉄の箱の蓋が開きました。

さらに、物体を掴むなどの作業も簡単に完了できます。

このロボットの背後には、ニューヨーク大学とメタ AI 研究所が立ち上げた最新の具現化された知能の成果があります。

研究者らは、視覚と触覚を組み合わせてロボットのタスク遂行効率を2倍以上に高めるTAVIと呼ばれる新しいトレーニング方法を提案した。

現在、研究チームの論文は公開されており、関連コードはオープンソース化されています。

このロボットの性能を見て、Meta 社の主任科学者 LeCun 氏は、これは驚くべき進歩だと思わずにいられませんでした。

では、この方法を使用して訓練されたロボットは他に何ができるのでしょうか?

取り出しやすく、出し入れも簡単

重ねられた2つのボウルを分離し、上のボウルを取り出すことができます。

注意深く観察すると、分離プロセス中にロボットの手が追跡動作を行い、黄色のボウルが緑色のボウルの内壁に沿って滑ることがわかります。

このロボットは「分割」だけでなく「結合」もできます。

ロボットは赤い物体を拾い上げ、それを紫色の蓋の中に正確に置きました。

または、消しゴムを裏返します。

大きな消しゴムを拾い、下のボックスを使って角度を調整するのが見えました。

なぜもっと指を使わなかったのかはわかりませんが、結局は道具の使い方を学びました。

つまり、TAVI 方式で訓練された具現化された知能ロボットは、人間と多少似た動きをすることになります。

統計的には、TAVI 方式は、6 つの典型的なタスクにおいて触覚または視覚フィードバックのみを使用する方式よりも大幅に優れています。

触覚情報のないAVI方式と比較すると、TAVIの平均成功率は135%増加し、画像+触覚報酬モデル方式と比較すると2倍になりました。

視覚と触覚の混合モードを使用する T-DEX トレーニング方法の成功率は、TAVI の 4 分の 1 未満です。

TAVI によって訓練されたロボットは強力な一般化能力も備えており、これまで見たことのない物体に対するタスクを完了することができます。

「ボウルを拾う」と「箱に詰める」という2つのタスクにおいて、ロボットが未知の物体に直面した際の成功率は半分以上でした。

さらに、TAVI方式で訓練されたロボットは、さまざまなタスクを優れた方法で完了できるだけでなく、複数のサブタスクを連続して実行することもできます。

堅牢性の面では、研究チームはカメラの角度を調整してテストを実施しましたが、ロボットは依然として高い成功率を維持しました。

では、TAVI法はどのようにしてこの効果を達成するのでしょうか?

視覚情報を用いたロボットの性能評価

TAVIの核となるのは、視覚的なフィードバックを利用してロボットを訓練することであり、その作業は主に3つのステップに分かれています。

最初のステップは、視覚と触覚という 2 つの次元から人間が提供するデモンストレーション情報を収集することです。

収集された視覚情報は、その後の学習プロセスで使用するための報酬関数を構築するために使用されます。

このプロセス中、システムは比較学習を使用して、タスクを完了するのに役立つ視覚的特徴を取得し、ロボットのアクションの完了を評価します。

その後、ロボットは強化学習を通じてトレーニングされ、触覚情報と視覚フィードバックを組み合わせて、高い完了スコアを達成するまで繰り返し試行できるようになります。

TAVI の学習は段階的なプロセスです。学習ステップが増えるにつれて、報酬関数はより完璧になり、ロボットの動きはより正確になります。

TAVIの柔軟性を向上させるために、研究チームは残余戦略も導入しました。

基本戦略と異なる点に遭遇した場合、最初からやり直す必要はなく、異なる部分だけを学習すれば済みます。

アブレーション実験の結果は、残余戦略がなく、ロボットが毎回ゼロから学習しなければならない場合、タスクを完了する成功率が低下することを示しています。

具現化された知能に興味があるなら、研究チームの論文を読んで詳細を知ることができます。

論文アドレス: https://arxiv.org/abs/2309.12300GitHub。

プロジェクトページ: https://github.com/irmakguzey/see-to-touch.

<<:  このロボットはバッテリーなしで「自走」でき、バッテリー寿命は無制限です | ワシントン大学

>>:  Amazon が企業による生成 AI の利用を支援する新機能と Bedrock を発表

ブログ    
ブログ    
ブログ    

推薦する

...

AIチップと人工知能産業は密接に連携している

[[355495]]人類社会は情報化から知能化へと移行しています。人工知能は知能化を実現するための重...

AIによる顔の改変など、新たな形の著作権侵害が引き起こす論争についてどう思いますか?

2019年にインターネット上で爆発的に広まった「ZAO」と呼ばれる顔を変えるソフトウェアなど、20...

AIが観測性を高める方法

今の時代、過去を懐かしむのは当然ですが、私たちは、以前と同じ観測可能性を持つことは決してできないよう...

MIT の新しい研究: ゼロから設計? AIにより誰もが服をデザインできるようになる

[[273025]]海外メディアの報道によると、3Dプリンターの人気の高まりと、Thingivers...

人工知能はクリーンエネルギーへの移行で数兆ドルの節約に貢献できる可能性がある

U+のレポートによると、風力発電所などの他のクリーンエネルギー源と組み合わせて人工知能を使用すると...

...

人工知能は電子商取引の分野でどのような応用が期待できるでしょうか?

科学技術と経済社会の急速な発展に伴い、人工知能の応用はますます一般的になり、その発展は私たちの仕事や...

Nvidia は 5 億ドル相当の巨額注文を獲得しました。インドのデータセンターが H100/GH200 を一気に 16,000 台購入

Nvidia は大きな注文を受けるのでしょうか? 1 回のトランザクションには 16,000 個の ...

独学で機械学習エンジニアを目指す人のための 10 の戒律

コードを書くのは少し憂鬱になるので、色に囲まれる必要があります自己規律や自己学習という言葉を軽く受け...

ブロックチェーン + AI、完璧な組み合わせですね?

「この二つの技は同じ名前だが、技の内容は大きく異なる。一つは全真剣術の強力な技で、もう一つは玉女剣...

ChatGPTを使用してスマートコントラクトとブロックチェーンに革命を起こす方法

1. はじめに近年、人工知能(AI)の進歩により、さまざまな業界に革命が起きています。 ChatGP...

ディープラーニングにおける次の大きな進歩は機械読み取りでしょうか?

機械読み取りはディープラーニングの次の大きな進歩となるだろう[[184205]] 2016 年を振り...

機械学習エンジニアに必要な 5 つのソフトスキル

[[395964]]導入機械学習エンジニアの役割は通常、プログラミング、ソフトウェア実装、データ分析...

...