BEV におけるレーダー・カメラ間データセット融合に関する実験的研究

BEV におけるレーダー・カメラ間データセット融合に関する実験的研究

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転載したものです。転載については出典元にお問い合わせください。

原題: 鳥瞰図におけるレーダーとカメラの融合に関するデータセット間実験的研究
論文リンク: https://arxiv.org/pdf/2309.15465.pdf
著者所属機関: オペル自動車株式会社 ラインラント=プファルツ工科大学 カイザースラウテルン=ランダウ ドイツ人工知能研究センター

論文のアイデア:

mmWave レーダーとカメラの融合システムは、補完的なセンサー情報を活用することで、先進運転支援システムや自動運転機能に非常に堅牢で信頼性の高い認識システムを提供できる可能性があります。カメラベースの物体検出における最近の進歩により、ミリ波レーダーカメラと鳥瞰図の特徴マップを融合する新たな可能性が生まれています。本稿では、新しい柔軟な融合ネットワークを提案し、nuScenes と View-of-Delft の 2 つのデータセットでそのパフォーマンスを評価します。私たちの実験では、カメラ部門では大規模で多様なトレーニング データが必要であるのに対し、mmWave レーダー部門では高性能 mmWave レーダーからより多くのメリットが得られることがわかりました。この論文では転移学習を使用して、より小さなデータセットでのカメラのパフォーマンスを向上させます。さらに、私たちの結果は、mmWave レーダーとカメラの融合アプローチが、カメラのみおよび mmWave レーダーのみのベースラインを大幅に上回ることを示しています。

ネットワーク設計:

3D オブジェクト検出における最近の傾向は、画像の特徴を共通の鳥瞰図 (BEV) 表現に変換することです。これにより、複数のカメラ間の融合や距離センサーの使用に使用できる柔軟な融合アーキテクチャが提供されます。本研究では、もともとレーザーカメラ融合に使用されていた BEVFusion 法を拡張して、ミリ波レーダーカメラ融合を実行します。提案された融合方法は、選択された mmWave レーダー データセットでトレーニングおよび評価されます。いくつかの実験で、各データセットの長所と短所について説明します。最後に、本論文では移行を適用してさらなる改善を実現します。

図1 BEVFusionに基づくBEVミリ波レーダーカメラ融合フローチャート。生成されたカメラ画像には、投影された mmWave レーダー検出と地上真実境界ボックスが含まれます。

この記事では、 BEVFusionの融合アーキテクチャについて説明します。図 1 は、BEV におけるミリ波レーダーとカメラの融合を提案するネットワークの概要を示しています。融合は、BEV 内でカメラと mmWave レーダー機能が接続されたときに発生することに注意してください。以下、この記事では各ブロックの詳細について説明します。

A. カメラエンコーダーとカメラからBEVへのビュー変換

カメラエンコーダとビュー変換は[15]のアイデアを採用しており、任意のカメラの外部パラメータと内部パラメータの画像BEV特徴を抽出できる柔軟なフレームワークである。まず、tiny-Swin Transformer ネットワークを使用して各画像から特徴を抽出します。次に、[14]のLiftとSplatのステップを使用して、画像の特徴をBEV平面に変換します。このため、高密度深度予測の後にルールベースのブロックが続き、そこで特徴が疑似ポイント クラウドに変換され、ラスタライズされて BEV グリッドに蓄積されます。

B. レーダーピラー特徴エンコーダ

このブロックの目的は、mmWave レーダー ポイント クラウドを、画像 BEV 機能と同じグリッド上の BEV 機能にエンコードすることです。この目的のために、本論文ではピラー特徴エンコーディング技術[16]を使用して、点群を無限に高いボクセル、いわゆるピラーにラスタライズします。

C. BEVエンコーダ

[5]と同様に、mmWaveレーダーとカメラのBEV機能はカスケード接続で融合されています。融合された特徴は、ジョイント畳み込み BEV エンコーダーによって処理され、ネットワークが空間的なずれを考慮し、異なるモダリティ間の相乗効果を活用できるようになります。

D. 検出ヘッド

この論文では、CenterPoint 検出ヘッドを使用して、各クラスのオブジェクト中心のヒートマップを予測します。さらに回帰ヘッドは、オブジェクトのサイズ、回転、高さ、および nuScenes の速度とクラス属性を予測します。ヒートマップはガウス焦点損失を使用してトレーニングされ、残りの検出ヘッドは L1 損失を使用してトレーニングされます。

実験結果:

引用:

Stäcker, L., Heidenreich, P., Rambach, J., & Stricker, D. (2023). 鳥瞰図におけるレーダーカメラ融合のデータセット間実験研究。ArXiv. /abs/2309.15465

オリジナルリンク: https://mp.weixin.qq.com/s/ayZl9tnm47y9VpfgmIG2qg

<<:  AIGC に向けてビジネスを準備するために CIO が尋ねるべき 8 つの質問

>>:  計算負荷の少ない BEV モデルのパフォーマンスを向上させるにはどうすればよいでしょうか?おそらく DistillBEV が答えでしょう!

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

2020年のコロナウイルスがロボット経済をいかに後押ししたか

致命的なコロナウイルスによって引き起こされた経済不況は、さまざまな業界に大きな混乱を引き起こしました...

私たちの重要なインフラは人工知能に対応できるでしょうか?

ChatGPT を楽しみや機能のために使用する個人から、タスクの自動化に人工知能 (AI) を適用...

ディープラーニングがなぜディープラーニングと呼ばれるのかご存知ですか?

これは単純なプッシュです。今日はディープラーニングという名前についてのみお話します。ディープラーニン...

Python コーディング面接の前に解くべき 10 個のアルゴリズム

アルゴリズムの練習がなぜ重要なのか?私が最初に問題を解き始めたときのように世間知らずにならないでくだ...

データサイエンスの分野で働くにはどのようなスキルが必要ですか?

本記事では、海外KDnuggetsフォーラムにおけるSimplilearnの統計結果と、国内有名求人...

ディープラーニングと通常の機械学習の違いは何ですか?

[[212077]]本質的に、ディープラーニングは、ディープニューラルネットワーク構造(多くの隠れ...

...

掃除ロボットが話し始めた。人工知能アシスタントは、家庭の6つの主要分野で努力している。

[[348486]]従来の掃除ロボットは、何も言わずにただ働くだけの家庭内の「ロールモデル」です。...

Amap、ADAS警告ナビゲーション機能を発表:視覚AI技術を使用して車両と歩行者の衝突をインテリジェントに警告

11月18日、高徳地図の新バージョンは革新的なADAS警告ナビゲーション機能をリリースしました。視覚...

海運業界は人工知能を活用して海賊行為と戦うことができる

今日、海賊行為は国際法、世界貿易、そして船員の安全と安心に対する複雑な課題であり続けています。電子機...

電流制限アルゴリズムを理解すれば十分です。

TL;DR (長すぎるので読まないでください)現在の制限アルゴリズム: カウンター、スライディング...

1.9k の星を獲得した LLM 微調整ツール Lamini は高速かつ強力で、無料で利用可能

LLM の微調整は、複雑な問題から、継続的な技術改善を通じてアクセス可能な問題へと変化しました。さて...

人工知能プラットフォームソリューションにおける品質エンジニアリング設計

翻訳者 | 朱 仙中校正:孫淑娟導入私たちは人工知能の黄金時代にいます。 AI ソリューションを導入...

...

インメモリコンピューティング技術に基づく人工知能チップが利用可能:パフォーマンスは数十から数百倍高速

[[249742]]人工知能システム用の新しいコンピュータチップが利用可能になりました。プリンストン...