ワクチン生産を加速するには?答えは医学ではなくテクノロジーにある

ワクチン生産を加速するには?答えは医学ではなくテクノロジーにある

世界各国の政府は新型コロナウイルス感染症の流行に対抗するためさまざまな対策を講じているが、世界的な流行状況は依然として深刻であり、効果的なワクチンを求める人々の願いはかつてないほど切実になっている。

[[323604]]

米国はRNA結合タンパク質をベースにしたワクチンの試験を開始し、ボランティアに致死性のものではないが類似のコロナウイルスを注射している。研究者らは急速に人間への臨床試験に移行し、動物実験を減らしているが、COVID-19ワクチンが承認されるまでには少なくとも18カ月かかるだろう。

[[323605]]

今の疑問は、ワクチン生産プロセスを加速できるかどうかだ。どうやって?その答えは医学ではなく、テクノロジーの分野にある。

ディープラーニングは、バックプロパゲーション アルゴリズムを使用して AI マシンが内部メトリックを変更できるようにし、それによって前のレイヤーの各新しいデータ表現レイヤーの計算方法を変更する AI ベースのアプローチです。

ディープラーニングは、音声認識、画像検出、顔認識、さらには創薬などの革新的な技術の開発を推進してきました。ディープラーニングは、COVID-19 の効果的なワクチンの開発を加速させる上で重要な役割を果たし続けています。

ディープラーニングとは何ですか?

ディープラーニングとアルゴリズム学習のバックプロパゲーション法との関係については、以前にも議論されています。それでは、ディープラーニングと機械学習を比較してみましょう。

機械学習には主に 3 つの学習方法があります。

  • 教師あり学習
  • 教師なし学習
  • 強化学習

ただし、これらの学習方法はすべて構造化データに依存していますが、ディープラーニングでは ANN (人工ニューラル ネットワーク) レイヤーが使用されます。つまり、機械学習では分類にオブジェクトに与えられた特定のラベルを使用しますが、ディープラーニングでは分類にオブジェクトの機能を定義するネットワーク層の階層を使用します。

レチノール結合タンパク質とは何ですか?

RBP(レチノール結合タンパク質)は、ウイルスの代替物として使用したり、病原菌を標的にして、病気に対するヒトの抗体防御を誘発したりすることができます。効果的なゲノム研究とワクチン構築を記念して、アフリカの Vivax マラリア原虫の場合と同様に、RBP 遺伝子座が RBP 攻撃の標的となることが期待されています。

RBP の標的部位は RNA-RNA 相互作用に基づいて予測されており、RBP の標的部位は包括的に研究され、多くの既存モデルが確立されています。最も人気のある方法は2つあります。

[[323606]]

画像ソース: unsplash

特徴レベル融合法:

配列情報を使用して RNA 相互作用部位の予測子が開発されました。周知のとおり、今日のヒトゲノムと疾患の研究には、すべて RNA 配列解析が必要です。アプリケーション開発構造で使用されるコーディング言語と同じです。

これらのシーケンス データは、細胞の活動やゲノム配列の変化など、さまざまなソースから収集されます。これらのデータと特徴を単一の高次元特徴に融合することで、RBP を予測できます。ただし、サイズ上の欠点があり、より多くの時間が必要になります。

意思決定レベルの融合:

このアプローチでは、5 つの異なる学習モデルが提案されています。これらのモデルは、ゲノム配列、二次配列、ゲノムオントロジー情報、RNA-RNA が相互作用する領域の種類など、RNA-RNA 相互作用のさまざまな側面に適用できます。これらのモデルの結果は最終的に統合され、RNA-RNA 相互作用部位を予測します。

新しいディープラーニングアプローチを使用したRBPサイト予測

RNA 相互作用部位または RBP 部位の発見は、特に創薬分野におけるゲノムベースの研究にとって非常に重要です。

現在、研究者たちは、新しいコロナウイルスワクチンの開発を支援するために、RBP部位を予測する「iDeep」と呼ばれるディープラーニング手法を研究している。

研究者が一般的に使用する 2 つの予測モデルには共通の欠点があります。それらはすべて観測データから抽出された特徴を使用しますが、それが間違っている可能性があります。ディープラーニングは、複数の抽象化レイヤーを融合する独自の方法を提供します。これらの抽象化レイヤーは、高レベルの抽象空間を通じてデータを増幅します。ディープラーニング ベースのモデルの独自性は、異種のデータを統合し、生の入力から複雑なパターンを学習することにあります。

コロナウイルスワクチン研究における RBP サイト予測のためのディープラーニング フレームワーク

DBN(ディープビリーフネットワーク):

これは、大量のデータから高レベルの特徴の学習を最適化するディープラーニング アルゴリズムです。 Deep-net rbp は、ディープ ビリーフ ネットワークを使用してレチノール結合タンパク質の相互作用部位を予測する別のアルゴリズムです。

CNN(畳み込みニューラルネットワーク):

これは、従来の統計学習モデルとは異なる別のタイプのディープラーニング モデルです。特徴抽出とパターンまたは特徴の学習を 2 つのステップではなく 1 つのステップで組み合わせます。これにより、抽出された特徴とモデルによって学習された特徴との間の不一致の可能性が低減されます。

CNN モデルは、入力データに対してモデルが使用するフィルターに基づいてパターンを認識することにより、RNA モチーフを識別するために使用されます。 RNA モチーフは、RNA 構造を構築するために使用される特定の RNA 配列です。

iDeepフレームワーク:

iDeep は、複数の畳み込みニューラル ネットワークとディープ ビリーフ ネットワーク モデルを組み合わせて作成されたマルチモデル フレームワークです。ハイブリッド ネットワークは、シーケンシャル データには畳み込みニューラル ネットワーク モデルを使用し、バイナリ データまたは数値データにはディープ ビリーフ ネットワーク モデルを使用します。ハイブリッド フレームワークを使用して組み合わせられたさまざまなディープ ニューラル ネットワークは、元の入力データを使用してトレーニングされます。

さらに、これらのモデルのトレーニング結果は異なる抽象化レイヤーから調整され、バックプロパゲーション法を使用して、各モデルで共有される最上位の共通レイヤーから最下位の単一の抽象化レイヤーまで抽象化レイヤーが調整されます。

次に、モデル全体の潜在的な特徴が抽出され、ディープラーニング アルゴリズムによる学習にさらに使用され、RNA-核酸相互作用をターゲットとする RBP サイトを予測します。

研究者がより早くワクチンを開発できるよう、私たちはどのように支援できるでしょうか?

  • コロナウイルスワクチンの開発は現在、ヒト臨床試験の段階に入っており、より良い結果を得るためには、mRNAを効果的に標的とするRBP部位を決定する必要がある。
  • iDeep は、モデルをレイヤーごとに学習できる多層ハイブリッド フレームワークを探求します。
  • このアプローチにより、研究者は連続的な特徴レイヤー学習を通じて RNA-RNA 相互作用部位の検出精度を向上させることができました。
  • iDeep モデルは、あるレイヤーの出力が後続のレイヤーの入力として機能するプロセスを作成するのに役立ちます。
  • iDeep モデルは、このプロセスに貢献する畳み込みニューラル ネットワークとディープ ビリーフ ネットワークを統合します。畳み込みニューラル ネットワークは、RNA 配列決定のための制御モチーフの学習と取得に役立ちます。
  • ディープ ビリーフ ネットワークは、生の入力データから高レベルの特徴をキャプチャして抽出できます。
  • したがって、さまざまなソースからの RNA とタンパク質の組み合わせを利用することで、分類力を向上させることができます。
  • 共有抽象化レイヤーと最下位レベルの個別レイヤーの融合により、iDeep フレームワークの機能の処理が非常に簡単になります。
  • 既存のフレームワークと比較して、iDeep は RNA-核酸相互作用部位の予測を簡単に高速化し、正確で明確な結果を提供できます。

[[323607]]

画像ソース: unsplash

AIが人類にとって伝染病と戦うための最も重要なツールの一つになったことは否定できない。研究者がディープラーニングの手法を使ってコロナウイルスワクチンの開発を加速できれば、多くの命が救われ、世界はより早く正常に戻ることができるだろう。これは期待する価値あり!

この記事は公開アカウント「Reading Core Technique」(ID: AI_Discovery)から転載したものです。

<<:  ボストン・ダイナミクスが伝染病と戦うために犬を派遣:頭にはiPad、背中にはトランシーバー、価格性能比は本当に大丈夫なのか?

>>:  感染症が猛威を振るう中、AIは第二次世界大戦以来最も深刻な世界的危機にどう立ち向かうことができるのか?

ブログ    

推薦する

C#とTypeScriptの作者がオープンソースAIプロジェクトTypeChatを発表

7月24日、C#とTypeScriptの父であるAnders Hejlsberg氏が、ユーザーがAI...

スマートヘルスケアの 6 つの主要な応用分野は何ですか?

スマートヘルスケアで使われる主なAI技術は画像とデータ分析機能ですが、その応用範囲は次の6つを含めて...

皇帝の側室選定と推薦アルゴリズムの仕組み

[[393467]]この記事はWeChatの公開アカウント「Shu Shixiong」から転載したも...

マスク氏はテスラ向けにChatGPTをカスタマイズする予定

編纂者:ヤン・ジェン制作:51CTO テクノロジースタック(WeChat ID:blog) Chat...

低速自動運転のためのパノラマ/魚眼カメラによる近距離認識

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

IBMは5億行のコードデータセットをオープンソース化したが、最も人気のあるプログラミング言語はPythonではない

Google サービスには 20 億行のコードが含まれており、自動車システムには 1 億行のコードが...

人工知能は将来のデジタルワークプレイスをどのように変えるのでしょうか?

[[347778]]デジタルワークプレイス コミュニケーション ソリューションの大手プロバイダー ...

...

...

無意味または有害なボットトラフィックは年間最大2億5000万ドルのコストがかかる

Cyber​​news によると、ますます多くの企業が、検出がますます困難になっている悪意のあるボッ...

...

デジタルツインの成功事例4つ

[[419123]] [51CTO.com クイック翻訳]人間は物理的な世界をよりよく理解するために...

分散機械学習プラットフォームの比較: Spark、PMLS、TensorFlow、MXNet

[[200819]]本稿では、分散システムの観点から現在の機械学習プラットフォームのいくつかを研究...

グラフ ネットワークをより堅牢にします。 Googleは、データのラベル付けバイアスやドメイン転送を恐れないSR-GNNを提案

グラフ ニューラル ネットワーク (GNN) は、機械学習でグラフ構造データを活用するための強力なツ...

人工知能の実装によるIoTセキュリティの最適化

モノのインターネット (IoT) は市場で急速に成長しており、ビジネス戦略は変化し、IoT デバイス...