AIと機械学習でデータセンターを強化

AIと機械学習でデータセンターを強化

人工知能(AI)と機械学習は、インテリジェントデータセンターにおいてますます重要な役割を果たしています。

今日の企業ではデータの重要性が高まっており、ビジネスの成長を促進するために大規模なデータセットを管理および統制するには、データ管理が不可欠です。企業は、大量のデータを処理するために高度な分析および自動化ツールを活用しています。また、設備の整ったデータセンターを活用して、データをより適切に管理します。データ センターは、クラウド ストレージ アプリケーションとトランザクションをサポートしながら、シームレスなデータ バックアップおよびリカバリ機能を提供します。ビジネス データ ストレージに独自の機能を提供するため、企業はデータ センター インフラストラクチャの改善に人工知能や機械学習などの新興テクノロジーを活用しています。

[[378692]]

機械学習は、大量のデータを調べてパターンを見つけることができる人工知能の高度なサブセットです。計画と設計、稼働時間の維持、IT ワークロードの管理、コストの制御など、データ センター運用のあらゆる側面を最適化する可能性があります。人工知能と機械学習は、データセンターの効率を劇的に向上させると期待されています。 IDC によると、データセンター内の IT 資産の 50% は、組み込みの AI 機能により自律的に動作するようになります。

人工知能と機械学習がスマートデータセンターを強化

データ センターは、単なるストレージ施設から重要なビジネス IT インフラストラクチャへと進化しました。データ センターは大規模なスーパーコンピュータと見なされているため、最新のデータ センターでは複数のサーバーを使用して、処理能力とコンピューティング能力をさらに最適化し、向上させています。今日、ほぼすべての組織は、毎日大量の情報を処理するためにデータ センターを必要としています。

人工知能や機械学習などのテクノロジーがさまざまなコンピューティング アプリケーションに導入され始めており、企業のデータ センター管理に革命をもたらしています。 AI データ センターは、企業がデータに基づいた意思決定を行うのに役立ちます。また、組織が増大するデータ ストレージと処理の要件に先手を打つことにも役立ちます。データセンターはサイバー脅威に対して脆弱であるため、データセンターの AI はデータ セキュリティを大幅に向上させることができます。このテクノロジーは、ネットワーク内の正常な動作を識別し、ネットワーク内の異常や逸脱に基づいてネットワーク リスクを検出します。データ センターの AI により、複雑な計算の管理が簡素化され、データ処理センターが自律的かつ効率的に動作できるようになります。

機械学習を活用したシステムを使用すると、予測保守や予防保守に役立つ可能性があります。エネルギー効率を改善し、温度を制御し、冷却システムを調整することで、冷却効率を高めることができます。電気コストはデータセンター インフラストラクチャの重要な要素であるため、エネルギー消費の最適化は常に最優先事項です。

エネルギーコストは毎年約10%上昇しており、その結果、キロワット時あたりのコストも高くなっています。米国だけでも、データセンターは毎年 900 億キロワット時を超える電力を消費しています。世界中のデータセンターでは推定 416 テラワットの電力が使用されており、使用量は世界的に増加しています。それでも、AI と機械学習は、企業のデータセンターにおけるエネルギー使用に数多くのメリットをもたらすことができます。たとえば、検索エンジンの Google は、データセンターに AI テクノロジーを適用してエネルギーを効率的に使用し、エネルギー消費を 40% 削減しました。

AI と機械学習は、サーバーのパフォーマンス、ネットワークの輻輳、ディスクの使用率を監視して、データの停止を検出し予測するためにも使用できます。その結果、AI と機械学習の革命により、データセンターのインフラストラクチャが強化され、よりスマートで自動化されたデータ管理が可能になります。

<<:  PyTorch ガイド: ディープラーニング モデルのトレーニングを高速化する 17 のヒント!

>>:  OpenAI は機械学習をサポートするために k8s を 7,500 ノードに拡張

ブログ    

推薦する

科学者たちは人間のように「考える」ことができる人工知能を開発している

[[429745]]人間のような AI を作るということは、単に人間の行動を模倣するということだけで...

2024 年の CIO の 14 の優先事項とトレンド

GenAI は 2024 年の最大のテクノロジー トレンドとなり、新しいツールのレビュー、インフラス...

持続可能な都市計画とスマートシティに人工知能を活用する方法

21 世紀の急速な都市化は、交通渋滞や汚染から住宅不足や公共サービスの逼迫まで、数多くの課題をもたら...

ビッグデータの本当の問題と、なぜ機械学習だけがそれを解決できるのか

多くの企業が、データの取得から洞察の獲得まで、スムーズに実行されるパイプラインの構築に依然として苦労...

アイティ族テクニカルクリニック第6回

【51CTO.comオリジナル記事】 [51CTO オリジナル記事、パートナーサイトに転載する場合は...

専門家が最もよく使う機械学習ツール 15 選

[[323871]]画像ソース: unsplash機械学習は素晴らしい技術ですが、その可能性を実現す...

大規模な機械学習: データサイエンスを本番システムアーキテクチャに導入するための典型的なパターン

ここ数年、データサイエンスの概念は多くの業界で受け入れられてきました。データ サイエンス (科学的研...

AI スタートアップはどうすれば成功できるのでしょうか?ガートナー:「以下の点が不可欠」

[[430175]]デジタル変革の波を受けて、さまざまな新興技術が急速に応用され、普及してきました...

正確な画像認識を望むなら、AIデータの精度を効果的に向上させることが鍵となる

技術の継続的な反復的発展により、人工知能の応用は人々の日常生活に巧妙に浸透してきました。インテリジェ...

もう読み間違えないでください!人工知能と人間の知能の違いを理解する

人工知能が賢くなるにつれて、人類を絶滅させるだろうという主張が次々と現れています。実際、多くの有力者...

...

...

AlphaGo の最初のバグ: 囲碁アルゴリズムの最大の弱点は何でしょうか?

[[163852]]どれほど恐ろしいモンスターにも弱点はあります。なぜAlphaGoは皆を驚かせる...

注目を浴びるAIとゲームは、どんな火花を散らすことができるのでしょうか?

[[202722]] 2005年、JJ Linは「Number 89757」で「人間を模倣した機械...